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CONTROLLABILITY OF SEMILINEAR SYSTEMS
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Abstract. In this paper, different sufficient conditions for exact controllability of semilinear
systems with a single constant point delay in control are established in infinite dimensional
space. The existence and uniqueness of mild solution is also proved under suitable assump-
tions. In particular, local Lipschitz continuity of a nonlinear function is used. To illustrate
the developed theory some examples are given.
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1. INTRODUCTION

Let Z = L2([0, τ ];V ), Y = L2([0, τ ]; V̂ ) be the function spaces corresponding to
Hilbert spaces V and V̂ , respectively. Let C([−h, 0], V ) be the Banach space of all
continuous functions from [−h, 0] to V with the supremum norm.

Consider the following semilinear system with delay in control:

x′(t) = Ax(t) +B0u(t) +B1u(t− h) + f(t, xt), t ∈ (0, τ ],

x(t) = φ(t), u(t) = 0, t ∈ [−h, 0],
(1.1)

where the state x(·) takes its value in space V , the control function u(·) takes its value
in space V̂ , A : D(A) ⊆ V → V is a closed linear operator with dense domain D(A)
generating a C0-semigroup T (t), B0 and B1 are bounded linear operators from V̂ to V ,
and the operator f : [0, τ ] × C([−h, 0], V ) → V is nonlinear. If x : [−h, τ ] → V is a
continuous function, then xt : [−h, 0]→ V is defined as xt(θ) = x(t+θ) for θ ∈ [−h, 0]
and φ ∈ C([−h, 0], V ).

If f ≡ 0, then the system (1.1) is called the corresponding linear system and is
denoted by (1.1)∗.
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Controllability is a qualitative property of dynamical control systems and is of
particular importance in control theory. In infinite dimensional spaces, controllability
results for abstract linear systems are well-developed and extensively investigated in
the literature [2]. Many results on exact controllability in infinite dimensional spaces
are summarized by Balachandran et al. [1]. Controllability of a linear system with
fixed delay in control is proved by Klamka [9, 10]. In [4] relative controllability and
minimum energy control of linear systems with distributed delay in control is studied
in a finite dimensional space. Stochastic relative exact and approximate controllability
of linear stochastic time variable systems is shown by Klamka [8] with a single time
variable point delay in control. Sufficient conditions for exact controllability and null
controllability of linear systems with delay in both state and control are obtained by
Davies et al. [3]. Controllability of linear time varying systems with multiple time
delay and impulsive effect is shown in [11]. Using Schauder’s fixed point theorem,
Klamka [7] discussed the controllability of semilinear and nonlinear systems in a finite
dimensional space. However, to the best of author’s knowledge, in infinite dimensional
space exact controllability of the semilinear system with fixed delay in control is an
untreated topic in the literature so far and this fact is the motivation of the present
paper.

This paper has two main objectives. The first objective is to obtain existence
and uniqueness of the mild solution using a technique similar to that of [13] with
suitable modification. To prove the results, we assume that the nonlinear function is
locally Lipschitz continuous in the second argument and satisfies the linear growth
condition. Our second objective is to show exact controllability of the semilinear
system (1.1) under suitable conditions. For this, first we prove exact controllability of
the corresponding linear system (1.1)∗ using the method of steps then the results are
extended for a class of semilinear systems.

The rest of this paper is organized as follows. In Section 2, we present some
preliminaries. In Section 3, the existence and uniqueness of the mild solution is proved.
Exact controllability of a semilinear system is shown in Section 4. The paper is ended
with some examples in Section 5.

2. PRELIMINARIES

In this section some basic definitions, which are useful for further developments, are
given.

Definition 2.1. A function x(·) ∈ C([−h, τ ];V ) is said to be the mild solution of
(1.1) if it satisfies

x(t) =





T (t)φ(0) +
∫ t
0
T (t− s)B0u(s)ds

+
∫ t
0
T (t− s)B1u(s− h)ds+

∫ t
0
T (t− s)f(s, xs)ds, t ∈ [0, τ ],

φ(t), t ∈ [−h, 0].

(2.1)

Let x(τ, φ(0), u) be the state value of system (1.1) at time τ corresponding to the
control u. The system (1.1) is said to be exactly controllable in time interval [0, τ ], if
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for every desired final state xτ there exists a control function u(·) ∈ Y such that the
mild solution x(t) given by (2.1) satisfies x(τ) = xτ .

To prove our main results we impose the following conditions:

[H1] The linear control system without delay (when B1 ≡ 0 and f ≡ 0) is controllable.
[H2] The nonlinear function f : [0, τ ] × C([−h, 0];V ) → V is locally Lipschitz con-

tinuous in x and uniform in t ∈ [0, τ ] i.e. there exists a positive number L(r)
such that

‖f(t, x1)− f(t, x2)‖V ≤ L(r)‖x1 − x2‖C ,

holds for all xj ∈ C([−h, 0];V ) with ‖xj‖ < r, j = 1, 2 and t ∈ [0, τ ].
[H3] There exists a real number k such that

‖f(t, x)‖V ≤ k[1 + ‖x‖C ]

holds for all x ∈ C([−h, 0];V ) and t ∈ [0, τ ].

3. EXISTENCE AND UNIQUENESS OF MILD SOLUTION

The existence and uniqueness of the mild solution is proved using the technique similar
to [13].

Theorem 3.1. Under assumptions [H2] and [H3] the system (2.1) admits a unique
mild solution in C([−h, τ ];V ) for each control function u ∈ Y .

Proof. Let lf = max0≤t≤τ ‖f(t, 0)‖ and max{‖B0‖, ‖B1‖} ≤ MB . Again let M ≥ 1
be a constant such that ‖T (t)‖ ≤M.

Define the mapping Φ : C([−h, t1];V )→ C([−h, t1];V ) as

(Φx)(t) =





T (t)φ(0) +
∫ t
0
T (t− s)B0u(s)ds

+
∫ t
0
T (t− s)B1u(s− h)ds+

∫ t
0
T (t− s)f(s, xs)ds, t ∈ [0, t1],

φ(t), t ∈ [−h, 0].

Now, if we are able to show that Φ has a fixed point in the space C([−h, t1];V ), then
(2.1) is the mild solution on [−h, t1].

Let for r0 > 0,

Br0 = {x(·) ∈ C([−h, t1];V ) : ‖x‖C([−h,t1];V ) ≤ r0, x(0) = φ(0)}.

Clearly, Br0 is a bounded and closed subset of C([−h, t1];V ). For any x(·) ∈ Br0 and
0 ≤ s ≤ t1, we have

‖xs‖C = max
−h≤θ≤0

‖x(s+ θ)‖ ≤ max
−h≤η≤t1

‖x(η)‖ ≤ r0.
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Thus

‖(Φx)(t)‖ ≤M‖φ(0)‖+MMB




t∫

0

‖u(s)‖ds+

t−h∫

−h

‖u(σ)‖dσ




+ML(r0)

t∫

0

‖xs‖ds+Mlf

t∫

0

ds

≤M
[
‖φ(0)‖+ 2MB

√
τ‖u‖Y + {L(r0)r0 + lf}t1

]
.

Now let r0 = 2M
[
‖φ(0)‖ + 2MB

√
τ‖u‖Y

]
+ 1 and 0 < t1 < τ is small enough such

that

{L(r0)r0 + lf}t1 ≤
[
‖φ(0)‖+ 2MB

√
τ‖u‖Y

]
+ 1.

Therefore, Φ maps the ball Br0 of radius r0 into itself.
Next, we show that Φ is a contraction on Br0 . For this, let us take x1, x2 ∈ Br0 ,

then we get

‖(Φx1)(t)− (Φx2)(t)‖ ≤M
t∫

0

‖f(s, (x1)s)− f(s, (x2)s)‖ds

≤ML(r0)

t∫

0

‖(x1)s − (x2)s‖ds

≤ML(r0)t‖x1 − x2‖C([−h,t1];V ).

By repeating this process, we get

‖(Φmx1)(t)− (Φmx2)(t)‖ ≤ MmLm(r0)tm

m!
‖x1 − x2‖C([−h,t1];V )

≤ MmLm(r0)τm

m!
‖x1 − x2‖C([−h,t1];V ).

Hence we have

‖Φmx1 − Φmx2‖C([−h,t1];V ) ≤
MmLm(r0)τm

m!
‖x1 − x2‖C([−h,t1];V ).

Therefore, Φm is a contraction mapping for a large integer m. By Banach’s fixed
point theorem, we conclude that Φ has a fixed point in Br0 , so (2.1) is the mild
solution on [−h, t1]. Similarly, we can prove that (2.1) is the mild solution on an
interval [t1, t2], t1 < t2. Repeating the above process, we can show that (2.1) is the
mild solution with a maximal existence interval [−h, t∗), t∗ ≤ τ. Next, we show that
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the mild solution is bounded. If t ∈ [−h, 0], then x(t) = φ(t). Hence it is bounded. If
t ∈ [0, τ ], then

‖x(t)‖V ≤M‖φ(0)‖+MMB

t∫

0

‖u(s)‖ds+MMB

t∫

0

‖u(s− h)‖ds

+Mk

t∫

0

[1 + ‖xs‖C ] ds

≤M‖φ(0)‖+ 2MMB

√
τ‖u(s)‖Y +Mkτ +Mk

t∫

0

‖xs‖Cds.

Then Gronwall’s inequality implies that

‖x(t)‖V ≤ ‖xt‖C ≤
[
M‖φ(0)‖+ 2MMB

√
τ‖u(s)‖Y +Mkτ

]
exp(Mkτ).

This implies that x(t) is bounded in the interval [−h, t∗). Thus we conclude that
x(·) is well defined on [−h, τ ].

Finally, we prove the uniqueness of mild solutions. For this, let x1 and x2 be any
two solutions of (2.1). If t ∈ [−h, 0], then x1(t) = x2(t) = φ(t) implies the uniqueness
of mild solutions in [−h, 0]. Next, if t ∈ [0, τ ], let

r? = max{‖x1‖C([−h,τ ];V ), ‖x2‖C([−h,τ ];V )}.

Then

‖x1(t)− x2(t)‖V ≤M
t∫

0

‖f(s, (x1)s)− f(s, (x2)s)‖ds

≤ML(r?)

τ∫

0

‖(x1)s − (x2)s‖Cds.

Therefore,

‖(x1)t − (x2)t‖C ≤ML(r?)

τ∫

0

‖(x1)s − (x2)s‖Cds.

Hence, Gronwall’s inequality implies that (x1)t = (x2)t for all t ∈ [0, τ ] and conse-
quently x1 = x2. This completes the proof.

4. CONTROLLABILITY RESULTS

In this section, using the method of steps, first we prove exact controllability of linear
systems (1.1)∗. Then, exact controllability of the semilinear system (1.1) is shown.
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Lemma 4.1. Under assumption [H1] the linear control system (1.1)∗ with delay in
control is exactly controllable.

Proof. Consider the linear delay system (1.1)∗ given by
{
x′(t) = Ax(t) +B0u(t) +B1u(t− h), t ∈ (0, τ ],

x(t) = φ(t), u(t) = 0, t ∈ [−h, 0].

To prove controllability of (1.1)∗, we use the method of steps, which is based on
searching for the mild solution of the system (1.1)∗ in succeeding intervals whose
length depends on the delay occurring in the system.

Now consider the following system in an interval [0, h]
{
y′(t) = Ay(t) +B0u(t), t ∈ [0, h],

y(0) = y0 = φ(0).
(4.1)

Since u(t − h) = 0 for 0 ≤ t ≤ h, we conclude that the mild solution x(t) of (1.1)∗

and the mild solution y(t) of (4.1) coincide in the interval [0, h]. Hence

x(h) = y(h) = yh = T (h)φ(0) +

h∫

0

T (h− s)B0u(s)ds,

The controllability of system (4.1) on interval [0, h] implies that there exists a control
function u1(·) ∈ L2([0, h]; V̂ ) (say) that steers the system from initial state y(0) to
the state y(h). Define

v1(t) =

{
0, t ∈ [−h, 0],

u1(t), t ∈ [0, h].

Then v1(·) ∈ L2([−h, h]; V̂ ) and steers the system (1.1)∗ from x(0) to x(h). This shows
that the system (1.1)∗ is controllable in the interval [0, h].

In the next step, consider the system in an interval [h, 2h] as
{
y′(t) = Ay(t) +B0u(t), t ∈ [h, 2h],

y(h) = yh + y1,
(4.2)

where y1 =
∫ 2h

h
T (h−s)B1v1(s−h)ds is known from the previous step since (s−h) ∈

[0, h] and the control function is known. The mild solution of system (4.2) in the
interval [h, 2h] is given by

y(t) = T (t− h)[yh + y1] +

t∫

h

T (t− s)B0u(s)ds.

At t = 2h, we get

x(2h) = y(2h) = y2h = T (h)yh + T (h)y1 +

2h∫

h

T (2h− s)B0u(s)ds.
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The controllability of system (4.2) implies that there exists a control u2(·) ∈
L2([h, 2h]; V̂ ) steers the system from y(h) to y(2h). Define

v2(t) =

{
v1(t), t ∈ [0, h],

u2(t), t ∈ [h, 2h].

Then v2(·) ∈ L2([0, 2h]; V̂ ) and steers the system (1.1)∗ from x(h) to x(2h). If we
continue in the same manner then at the n-th step, we have the following system in
an interval t ∈ [(n− 1)h, nh]:

{
y′(t) = Ay(t) +B0u(t), t ∈ [(n− 1)h, nh],

y((n− 1)h) = y(n−1)h + y(n−1),
(4.3)

where y(n−1) =
∫ nh
(n−1)h T ((n − 1)h − s)B1vn−1(s − h)ds is known from the previous

step. The mild solution of the system (4.3) in the interval [(n− 1)h, nh] is given by

y(t) = T (t− (n− 1)h)[y(n−1)h + y(n−1)] +

t∫

(n−1)h

T (t− s)B0u(s)ds.

The controllability of system (4.3) implies that there exists a control
un(·) ∈ L2([(n− 1)h, nh]; V̂ ) which steering the system from y((n − 1)h) to y(nh).
Define vn(t)

vn(t) =

{
vn−1(t), t ∈ [(n− 2)h, (n− 1)h],

un(t), t ∈ [(n− 1)h, nh].

Then vn(·) ∈ L2([0, nh]; V̂ ) and we have

x(nh) = y(nh) = ynh = T (nh− (n− 1)h)[y(n−1)h + y(n−1)]

+

nh∫

(n−1)h

T (nh− s)B0un(s)ds.
(4.4)

Now we write (4.4) in terms of the initial condition, for this we use the properties of
the C0-semigroup and the results obtained for the mild solution in the previous steps.
Thus we have

T (nh− (n− 1)h)y(n−1)h = T (nh)φ(0) +

n−1∑

k=1

T (nh− kh)

kh∫

(k−1)h

T (kh− s)B0uk(s)ds

+
n−1∑

k=1

T (nh− kh)

(k−1)h∫

(k−2)h

T (kh− h− s)B1vk−1(s)ds.
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When we rewrite equation (4.4), we have

x(nh) = y(nh) = ynh

= T (nh)φ(0) +

n∑

k=1

T (nh− kh)

kh∫

(k−1)h

T (kh− s)B0uk(s)ds

+

n∑

k=1

T (nh− kh)

(k−1)h∫

(k−2)h

T (kh− h− s)B1vk−1(s)ds.

Hence we can find the mild solution of (1.1)∗ in an interval [nh, (n + 1)h] with the
initial condition ynh + yn, where yn =

∫ τ
nh
T (nh − s)B1u(s − h)ds, which is known

from the previous step. Then we obtain

y(τ, φ(0), u) = y(τ) for τ ∈ [nh, (n+ 1)h].

Thus, the solution of (1.1)∗ at time τ > 0 has the form

y(τ, φ(0), u) = x(τ) = T (τ − nh)[ynh + yn] +

τ∫

nh

T (τ − s)B0u(s)ds

= T (τ)φ(0) +
n∑

k=1

T (nh− nk)

kh∫

(k−1)h

T (kh− s)B0uk(s)ds

+
n∑

k=1

T (nh− nk)

(k−1)h∫

(k−2)h

T (kh− h− s)B1vk−1(s)ds

+

τ∫

nh

T (τ − s)B0u(s)ds+

τ∫

nh

T (τ − s)B1u(s− h)ds.

This shows that the system (1.1)∗ can be steered from x(0) to x(τ). Therefore, the
system (1.1)∗ is exact controllable.

Remark 4.2. For a finite dimensional space, relative controllability and minimum
energy control of linear time varying systems with time variable delays in control are
proved by Klamka in [5].

Remark 4.3. In [6] relative controllability, absolute controllability and minimum
energy control of linear time varying systems with lumped and distributed delays in
the control function are examined.
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To prove exact controllability of system (1.1), we define two new operators si-
milar to [14]. For any t1, t2 ∈ [0, τ ] with t2 > t1, E : L2([t1, t2]; V̂ ) → V and N :
L2([t1, t2]; V̂ )→ V are defined as

E(t1, t2)u =

t2∫

t1

T (t2 − s)B0u(s)ds+

t2∫

t1

T (t2 − s)B1u(s− h)ds,

N(t1, t2)u =

t2∫

t1

T (t2 − s)f(s, xs)ds,

where x(·) is the mild solution of (1.1) with the control function u(·) ∈ L2([t1, t2]; V̂ )
in the definition of N(t1, t2). Now we are able to prove sufficient conditions for exact
controllability of the semilinear system (1.1).

Theorem 4.4. Under assumptions [H1]–[H3] the semilinear control system (1.1) is
exactly controllable if there exists a function Q(·) ∈ L1([0, τ ]) such that

‖f(t, ψ)‖ ≤ Q(t) for all (t, ψ) ∈ [0, τ ]× C.

Proof. Since Q(·) ∈ L1([0, τ ]), we can select an increasing sequence tn ∈ [0, τ ] such
that tn → τ and

τ∫

tn

Q(t)dt→ 0, as n→∞.

Since, by assumption [H1] and Lemma 4.1, the linear system (1.1)∗ is exact control-
lable on [0, τ ], for any xτ ∈ V there exists a control function ū0 ∈ Y such that

xτ = T (τ)φ(0) + E(0, τ)ū0.

Let x1 = x(t1, φ(0), ū0). Again, the controllability of (1.1)∗ on [t1, τ ] implies that there
exists a control function ū1 ∈ L2([t1, τ ]; V̂ ) such that

xτ = T (τ − t1)x1 + E(t1, τ)ū1.

Define

v̄1(t) =

{
ū0(t), t ∈ [0, t1],

ū1(t), t ∈ [t1, τ ].

Then v̄1 ∈ Y . If we continue in the same manner then we get three sequences xn, ūn
and v̄n such that ūn(·) ∈ L2([tn, τ ]; V̂ ), v̄n(·) ∈ Y ,

v̄n(t) =

{
ūn−1(t), t ∈ [0, tn],

ūn(t), t ∈ [tn, τ ]

and xn = x(tn, φ(0), ūn−1) with

xτ = T (τ − tn)xn + E(tn, τ)ūn.
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Thus the mild solution of system (1.1) with the control function v̄n is given by

x(t; v̄n) = T (t− tn)[T (tn)φ(0) + E(0, tn)v̄n +N(0, tn)v̄n]

+ E(tn, t)v̄n +N(tn, t)v̄n

= T (t− tn)[T (tn)φ(0) + E(0, tn)ūn−1 +N(0, tn)ūn−1]

+ E(tn, t)ūn +N(tn, t)ūn

= T (t− tn)xn + E(tn, t)ūn +N(tn, t)ūn.

Therefore,

‖x(τ ; v̄n)− xτ‖ ≤ ‖T (t− tn)xn + E(tn, t)ūn − xτ‖+ ‖N(tn, t)ūn‖

≤
τ∫

tn

‖T (τ − s)f(s, xs)ds‖ ≤M
τ∫

tn

‖Q(s)ds‖ → 0 as n→∞.

This implies that x(τ ; v̄n) = xτ for sufficiently large n. Hence, the semilinear system
(1.1) is exactly controllable.

5. EXAMPLES

Example 5.1. Let V = L2(0, π) and A ≡ d2

dx2 with D(A) consisting of all y ∈ V

with d2y
dx2 and y(0) = 0 = y(π). Put en(x) =

√
2/π sin(nx), 0 ≤ x ≤ π, n = 1, 2, . . ..

Then {en : n = 1, 2, . . .} is an orthonormal base for V and en is the eigenfunction
corresponding to the eigenvalue λn = −n2 of the operator A. Then the C0-semigroup
T (t) generated by A has exp(λnt) as the eigenvalues and en as their corresponding
eigenfunctions [12]. Define an infinite-dimensional space V̂ by

V̂ =

{
u
∣∣∣u =

∞∑

n=2

unen with
∞∑

n=2

u2n <∞
}
.

The norm in V̂ is defined by

‖u‖V̂ =

( ∞∑

n=2

u2n

)1/2

.

Define a continuous linear map B from V̂ to V as

Bu = 2u2e1 +

∞∑

n=2

unen for u =

∞∑

n=2

unen ∈ V̂ .

We define the operator B0 : Y → Z by (B0u)(t) = (Bu)(t).
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Let us consider the following semilinear control system of the form

∂y(t, x)

∂t
=
∂2y(t, x)

∂x2
+B0u(t, x) + u(t− h, x) + f(t, y(t− h, x)), t ∈ [0, τ ],

y(t, 0) = y(t, π) = 0, t ∈ [0, τ ],

y(t, x) = φ(t, x), t ∈ [−h, 0], 0 < x < π

(5.1)

where φ(t, x) is continuous. The system (5.1) can be written in the abstract form given
by (1.1) with B1 = I. The control function u(t, x) ∈ L2([0, τ ]; V̂ ) = L2([0, τ ]× (0, π)).
If the conditions [H1] is satisfied, then controllability of the corresponding linear
system to (5.1) follows from Lemma 4.1. Also if the nonlinear term f is considered as
an operator satisfying Hypothesis [H2] and [H3] then exact controllability of system
(5.1) follows from Theorem 4.4.

Example 5.2. Consider the controlled wave equation with a distributed control
u(·) ∈ L2([0, 1]):

∂2y(t, x)

∂t2
=
∂2y(t, x)

∂x2
+ u(t, x) + u(t− h, x) + f(t, y(t+ θ, x)), t ∈ [0, τ ],

y(t, 0) = y(t, 1) = 0, t > 0,

y(0, x) = y0(x), yt(0, x) = y1(x), 0 ≤ x ≤ 1,

(5.2)

where y0, y1 ∈ L2([0, 1]).
Proceeding in a similar way to that in [2], introduce the Hilbert space V =

D(A
1/2
0 )⊕ L2([0, 1]), endowed with the inner product

〈r, s〉 =

〈[
r1
r2

]
,

[
s1
s2

]〉
=

∞∑

n=1

{n2π2〈r1, en〉〈en, s1〉+ 〈r2, en〉〈en, s2〉},

where en(x) =
√

2 sin(nπx) and 〈·, ·〉 denotes the usual inner product on L2([0, 1]).
Taking the operator

A =

[
0 I
A0 0

]
,

where A0 ≡ d2

dx2 with domain D(A0) = {ψ ∈ L2([0, 1]) : ψ, (d/dx)ψ are absolutely
continuous, (d2/dx2)ψ ∈ L2([0, 1]) and ψ(0) = ψ(1) = 0}. Then A is the infinitesimal
generator of a semigroup T (t) on V given by

T (t)

[
r1
r2

]
=
∞∑

n=1

[
cos(nπt) (nπ)−1 sin(nπt)

−(nπ) sin(nπt) cos(nπt)

] [
rn1
rn2

]
en.

Then problem (5.2) can be formulated in the abstract form as

dz(t, x)

dt
= Az(t, x) +Bu(t, x) +B1u(t− h, x) + Cf(t, z(t+ θ, x)),

z(0) = z0,
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where
z =

[
y
yt

]
, B = B1 = C =

[
0
I

]
, z(0) =

[
y(0)
yt(0)

]
.

The controllability of the system (5.2) in the interval [0, τ ] follows from Theorem 4.4,
if all the assumptions are satisfied.

Let f(t, zt) = f(t, zt(0)) = f(t, z(t)) = 1
t + sin z(t). It should be noted that

‖f(t, zt)‖ ≤
1

t
+ 1 = Q(t).

Clearly, Q(t) 6∈ L1([0, τ ]). Although it is easy to verify that the system (5.2) is exactly
controllable as the nonlinear function is Lipschitz continuous in the second argument.
This shows that Theorem 4.4 is only sufficient but not a necessary condition for exact
controllability of the semilinear system.
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