PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Current status of modelling the semi-insulating 4H–SiC transient photoconductivity for application to photoconductive switches

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present the current status of modelling the time evolution of the transient conductivity of photoexcited semi-insulating (SI) 4H–SiC taking into account the properties of defect centres. A comprehensive model that includes the presence of six, the most significant, point defects occurring in SI 4H–SiC crystals is presented. The defect centres are attributed to the two kinds of nitrogen-related shallow donors, a boron-related shallow acceptor, deep electron and hole traps, and the Z ½ recombination centre. We present the results of the state-of-the-art numerical simulations showing how the photoconductivity transients change in time and how these changes are affected by the properties of defect centres. The properties of defect centres assumed for modelling are compared with the results of experimental studies of deep-level defects in high purity (HP) SI 4H–SiC wafers performed by the high-resolution photoinduced transient spectroscopy (HRPITS). The simulated photoconductivity transients are also compared with the experimental photocurrent transients for the HP SI 4H–SiC wafers with different deep-level defects. It is shown that a high-temperature annealing producing the C-rich material enables the fast photocurrent transients to be achieved. The presented analysis can be useful or technology of SI 4H–SiC high-power photoconductive switches with suitable characteristics.
Twórcy
autor
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
autor
  • Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa, Poland
  • Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa, Poland
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
  • Military University of Technology, ul. Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • [1] W. Shi, C. Maa, L. Hou, G. Xie, L. Tian, S. Wu, Velocity of current filament at the high gain mode of GaAs power photoconductive switches, Physica B 406 (2011) 3741–3744.
  • [2] M. Missous, Semiconductor material development for terahertz applications, in: Daryoosh Saeedkia (Ed.), Electronic and Optical Materials: Handbook of Terahertz Technology for Imaging, Sensing and Communication, No. 34, Woodhead Publishing Limited, Oxford, Cambridge, Philadelphia, New Delphi, 2013, pp. 464–489.
  • [3] K. Zhua, D. Johnstonea, J. Leacha, Y. Fua, H. Morkoc, G. Lib, B. Ganguly, High power photoconductive switches of 4H SiC with Si3N4 passivation and n+-GaN subcontact, Superlatt. Microstruct. 41 (2007) 264–270.
  • [4] I. Jyothi, V. Janardhanam, Jong-Hee Kim, Hyung-Joong Yun, Jae-Chan Jeong, Hyobong Hong, Sung-Nam Lee, Chel-Jong Choi, Electrical and structural properties of Au/Yb Schottky contact on p-type GaN as a function of the annealing temperature, J. Alloys Compd. 688 (2016) 875–881.
  • [5] Y. Turkulets, T. Bick, I. Shalish, Double surface effect causes a peak in band-edge photocurrent spectra: a quantitative model, J. Phys. D: Appl. Phys. 49 (2016) 365104.
  • [6] Z. Hemmata, R. Faeza, E. Morenob, F. Rasoulic, F. Radfara, M. Zaimbashi, Transient and steady state study of a rear-illuminated 6H-SiC photoconductive semiconductor switch, Optic 127 (2016) 4615–4620.
  • [7] C. Longeaud, J.P. Kleider, P. Kaminski, R. Kozlowski, M. Miczuga, Characterization of defect levels in semi-insulating 6H–SiC by means of photoinduced transient spectroscopy and modulated photocurrent technique, J. Phys.: Condens. Matter 21 (2009) 045801.
  • [8] M. Kato, Y. Mori, M. Ichimura, Microwave reflectivity from 4H–SiC under a high-injection condition: impacts of electron–hole scattering, Jpn. J. Appl. Phys. 54 (2015), 04DP14.
  • [9] J.S. Sullivan, Wide Bandgap Extrinsic Photoconductive Switches, UNT Digital Library, Livermore, CA, 2013.
  • [10] D. Chaussende, P.J. Wellmann, M. Pons, Status of SiC bulk growth processes, J. Phys. D: Appl. Phys. 40 (2007) 6150–6158.
  • [11] T.P. Chow, M. Ghezzo, SiC power devices, MRS Proc. 423 (1996) 9–21.
  • [12] T. Kimoto, S. Nakazawa, K. Hashimoto, H. Matsunami, Reduction of doping and trap concentrations in 4H–SiC epitaxial layers grown by chemical vapor deposition, Appl. Phys. Lett. 79 (17) (2001) 2761–2763.
  • [13] K. Fujihira, T. Kimoto, H. Matsunami, High-purity and high-quality 4H–SiC grown at high speed by chimney-type vertical hot-wall chemical vapor deposition, Appl. Phys. Lett. 80 (9) (2002) 1586–1588.
  • [14] P. Kamiński, R. Kozłowski, M. Miczuga, M. Pawłowski, M. Kozubal, M.a. Pawłowski, High-resolution photoinduced transient spectroscopy of defect centres in vanadium-doped semi-insulating SiC, J. Mater. Sci.: Mater. Electron. 19 (2008) S224–S228.
  • [15] V.A. Il’in, V.S. Ballandovich, EPR and DLTS of point defects in silicon carbide crystals, Defect Diff Forum 103–105 (1993) 633–644.
  • [16] M. Wichtowski, Perturbative approach to space–charge field dynamics in photorefractive semiconductors, J. Opt. A 14 (2012), 045201.
  • [17] M. Lades, Modelling and simulation of wide bandgap semiconductor devices: 4H/6H-SiC Selected Topics of Electronics and Micromechatronics, vol. 3, Shaker Verlag, Aachen, 2000.
  • [18] N. Schüler, T. Hahn, S. Schmerler, S. Hahn, K. Dornich, J.R. Niklas, Simulations of photoconductivity and lifetime for steady state and nonsteady state measurements, J. Appl. Phys. 107 (6) (2010), 064901.
  • [19] K. Kelkar, C. Fessler, W.C. Nunnally, N.E. Islam, Experimental and simulation characterization of semi-insulating 6H SIC photoconductive switch for pulsed power applications, Proc. IEEE Pulsed Power Conf. (2005) 904–907.
  • [20] M. Mubashshir, H. Farooqi, R.K. Srivastava, Structural, optical and photoconductivity study of ZnO nanoparticles synthesized by annealing of ZnS nanoparticles, J. Alloys Compd. 691 (2017) 275–286.
  • [21] P. Tierney, T.J. Ennis, Á. Allen, J. Wright, The role of mid-band gap defect levels in persistent photoconductivity in RF sputtered SnO2 thin films, Thin Solid Films 603 (2016) 50–55.
  • [22] M. Suproniuk, P. Kamiński, R. Kozłowski, M. Pawłowski, Effect of deep-level defects on transient photoconductivity of semi-insulating 4H–SiC, Acta Phys. Pol. A 125 (4) (2014) 1042–1048.
  • [23] M. Kozubal, Institute of Electronic Materials Technology, Warsaw, Ph.D. thesis, 2011.
  • [24] K. Danno, T. Kimoto, Deep hole traps in as-grown 4H–SiC epilayers investigated by deep level transient spectroscopy, Mater. Sci. Forum 527–529 (2006) 501–504.
  • [25] M.E. Zvanut, V.V. Konovalov, The level position of a deep intrinsic defect in 4H–SiC studied by photoinduced electron paramagnetic resonance, Appl. Phys. Lett. 80 (3) (2002) 410–412.
  • [26] P. Kamiński, M. Kozubal, J.D. Caldwell, K.K. Kew, B.L. VanMil, R.L. Myers-Ward, C.R. Eddy Jr., D.K. Gaskill, Deep-level defects in epitaxial 4H–SiC irradiated with low-energy electrons, Electron. Mater. 38 (3/4) (2010) 26–34.
  • [27] M. Suproniuk, et al., An intelligent measurement system for diagnosing of semi-insulating materials by photoinduced transient spectroscopy, Electr. Rev. 85 (11) (2009) 93–98.
  • [28] M. Suproniuk, et al., An intelligent measurement system for characterisation of defect centres in semi-insulating materials, Electr. Rev. 86 (11a) (2010) 247–252.
  • [29] R.H. Bube, Photoelectric Properties of Semiconductors, Cambridge University Press, Cambridge, UK, 1992.
  • [30] R. Kozłowski, P. Kamiński, J. Żelazko, Determining the defect centre concentration in high-resistivity semiconductors from the Laplace spectral fringes obtained by the analysis of the photocurrent relaxation waveforms, Electr. Mater. (ITME) 40 (2012) 19–33.
  • [31] J. Krupka, W. Karcz, S.P. Avdeyev, P. Kamiński, R. Kozłowski, Electrical properties of deuteron irradiated high resistivity silicon, Nucl. Instr. Meth. Phys. Res. B 325 (2014) 107–114.
  • [32] N.T. Son, P. Carlsson, J. ul Hassan, B. Magnusson, E. Janzén, Defects and carrier compensation in semi-insulating 4H–SiC substrates, Phys. Rev. B 75 (2007) 155204.
  • [33] M.V.S. Chandrashekhar, I. Chowdhury, P. Kaminski, R. Kozlowski, P.B. Klein, T. Sudarshan, High purity semi-insulating 4H–SiC epitaxial layers by defect-competition epitaxy: controlling Si vacancies, Appl. Phys. Expr. 5 (2012) 025502.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a1dcf45-e55b-4130-86c4-3304ffc9ae8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.