PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Unequally Spaced Antenna Array Synthesis Using Accelerating Gaussian Mutated Cat Swarm Optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low peak sidelobe level (PSLL) and antenna arrays with high directivity are needed nowadays for reliable wireless communication systems. Controlling the PSLL is a major is sue in designing effective antenna array systems. In this paper, a nature inspired technique, namely accelerating Gaussian mutated cat swarm optimization (AGMCSO) that attributes global search abilities, is proposed to control PSLL in the radiation pattern. In AGM-SCO, Gaussian mutation with an acceleration parameter is used in the position-updated equa tion, which allows the algorithm to search in a systematic way to prevent premature convergence and to enhance the speed of convergence. Experiments concerning several benchmark multimodal problems have been conducted and the obtained results illustrate that AGMCSO shows excellent performance concerning evolutionary speed and accuracy. To validate the overall efficacy of the algorithm, a sensitivity analysis was per formed for different AGMCSO parameters. AGMCSO was researched on numerous linear, unequally spaced antenna ar rays and the results show that in terms of generating low PSLL with a narrow first null beamwidth (FNBW), AGMCSO out performs conventional algorithms.
Rocznik
Tom
Strony
99--109
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of ECE, St. Peter's Engineering College, Hyderabad, India
  • Department of ECE, St. Peter's Engineering College, Hyderabad, India
  • Department of ECE, St. Peter's Engineering College, Hyderabad, India
  • Department of ECE, St. Peter's Engineering College, Hyderabad, India
Bibliografia
  • [1] D. Khzmalyan and A. S. Kondrat'yev, „Phase-only synthesis of antenna array amplitude pattern", Int. J. Electron., vol. 81, no. 5, pp. 585-589, 1996 (DOI: 10.1080/002072196136490).
  • [2] K. K. Yan and Y. Lu, „Sidelobe reduction in array pattern synthesis using genetic algorithm", IEEE Trans. Anten. Propag., vol. 45, no. 7, pp. 1117-1122, 1997 (DOI: 10.1109/8.596902).
  • [3] F. J. Ares-Pena, J. A. Gonzalez, E. Lopez, and S. R. Rengarajan, „Genetic algorithms in the design and optimization of antenna array patterns", IEEE Trans. Anten. Propag., vol. 47, no. 3, pp. 506-510, 1999 (DOI: 10.1109/8.768786).
  • [4] K. Chen, Z. He, and C. Han, „A modified real GA for the sparse linear array synthesis with multiple constraints", IEEE Trans. Anten. Propag., vol. 54, no. 7, pp. 2169-2173, 2006 (DOI: 10.1109/TAP.2006.877211).
  • [5] L. Cen, Z. L. Yu, and W. Ser, „Linear aperiodic array synthesis using an improved genetic algorithm", IEEE Trans. Anten. Propag., vol. 60, no. 2, pp. 895-902, 2012 (DOI: 10.1109/TAP.2011.2173111).
  • [6] T. Reshma, K. V. Reddy, D. Pratap, and V. Agilan, „Parameters optimization using fuzzy rule-based multi-objective genetic algorithm for an event-based Rainfall-Runoff model", Water Resour. Manag., vol. 32, no. 3, pp. 1501-1516, 2018 (DOI: 10.1007/s11269-017-1884-2).
  • [7] D. G. Kurup, M. Himidi, and A. Rydberg, „Synthesis of uniform amplitude unequally spaced antenna arrays using the differentia evolution algorithm", IEEE Trans. Anten. Propag., vol. 51, no. 9, pp. 2210-2217, 2003 (DOI: 10.1109/TAP.2003.816361).
  • [8] J. Q. Zhang and A. C. Sanderson, „JADE: Adaptive differential evolution with optional external archive", IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945-958, 2009 (DOI: 10.1109/TEVC.2009.2014613).
  • [9] C. Lin, A.-Y. Qing, and Q.-Y. Feng, „Synthesis of unequally spaced antenna arrays by using differential evolution", IEEE Trans. Anten. Propag., vol. 58, no. 8, pp. 2553-2561, 2010 (DOI: 10.1109/TAP.2010.2048864).
  • [10] S. K. Goudos, K. Siakavara, and T. Samaras, „Sparse linear array synthesis with multiple constraints using differential evolution with strategy adaptation", IEEE Anten. Wirel. Propag. Lett., vol. 10, pp. 670-673, 2011 (DOI: 10.1109/LAWP.2011.2161256).
  • [11] S. K. Goudos et al., „Self-adaptive differential evolution applied to real-valued antenna and microwave design problems", IEEE Trans. Anten. Propag., vol. 59, no. 4, pp. 1286-98, 2011 (DOI: 10.1109/TAP.2011.2109678).
  • [12] F. Zhang, W. Jia, and M. Yao, „Linear aperiodic array synthesis using differential evolution algorithm", IEEE Anten. Wirel. Propag. Lett., vol. 12, pp. 797-800, 2013 (DOI: 10.1109/LAWP.2013.2270930).
  • [13] D. W. Boeringer and D. H. Werner, „Particle swarm optimization versus genetic algorithms for phased array synthesis", IEEE Trans. Anten. Propag., vol. 52, no. 3, pp. 771-779, 2004 (DOI: 10.1109/TAP.2004.825102).
  • [14] M. M. Khodier and C. G. Christodoulou, „Linear array geometry synthesis with minimum sidelobe level and null controlling using particle swarm optimization", IEEE Trans. Anten. Propag., vol. 53, no. 8, pp. 2674-2679, 2005 (DOI: 10.1109/TAP.2005.851762).
  • [15] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, „Comprehensive learning particle swarm optimizer for global optimization of multimodal functions", IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281-295, 2006 (DOI: 10.1109/TEVC.2005.857610).
  • [16] S. K. Goudos et al., „Application of comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with side lobe level suppression and null control", IEEE Anten. Wirel. Propag. Lett., vol. 9, pp. 125-129, 2010 (DOI: 10.1109/LAWP.2010.2044552).
  • [17] W.-B. Wang, Q.-Y. Feng, and D. Liu, „Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays", Progr. in Electromag. Res., vol. 115, pp. 173-189, 2011 (DOI:10.2528/PIER11012305).
  • [18] Z. H. Zhan, J. Zhang, and Y. Li, „Orthogonal learning particle swarm optimization", IEEE Trans, Evol. Comput., vol. 15, no. 6, pp. 281-295, 2011 (DOI: 10.1109/TEVC.2010.2052054).
  • [19] R. Bhattacharya, T. K. Bhattacharyya, and R. Garg, „Position mutated hierarchical particle swarm optimization and its application in synthesis of unequally spaced antenna arrays", IEEE Trans. Anten. Propag., vol. 60, no. 7, pp. 3174-2181, 2012 (DOI: 10.1109/TAP.2012.2196917).
  • [20] X. Xia, J. Liu, and Z. Hu, „An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space", Appl. Soft Comput., vol. 23, pp. 76-90, 2014 (DOI:10.1016/j.asoc.2014.06.012).
  • [21] L. A. Bewoor, V. C. Prakash, and S. U. Sapkal, „Evolutionary hybrid particle swarm optimization algorithm for solving np-hard no-wait ow shop scheduling problems", Algorithms, vol. 10, no. 4, pp. 1-17, 2017 (DOI: 10.3390/a10040121).
  • [22] A. Ahilan et al., „Segmentation by fractional order Darwinian particle swarm optimization based multilevel thresholding and improved lossless prediction based compression algorithm for medical images", IEEE Access, vol. 7, pp. 89570-89580, 2019 (DOI: 10.1109/ACCESS.2019.2891632).
  • [23] R. R. Eva and Q. T. Oscar, „Linear array synthesis using an ant colony optimization based algorithm", IEEE Trans. Anten. Propag., vol. 49, no. 2, pp. 70-79, 2007 (DOI: 10.1109/MAP.2007.376644).
  • [24] M. S. Kumar and M. Venkatesan, „Multi-objective task scheduling using hybrid genetic ant colony optimization algorithm in cloud environment", Wirel. Pers. Commun., vol 107, pp. 1835-1848, 2019 (DOI: 10.1007/s11277-019-06360-8).
  • [25] C. J. Malar et al., „Multi constraints applied energy effcient routing technique based on ant colony optimization used for disaster resilient location detection in mobile ad-hoc network", J. of Ambient Intell. and Human. Comput., vol. 12, pp. 4007-4017, 2021 (DOI: 10.1007/s12652-020-01767-9).
  • [26] G. Panda, P. M. Pradhan, and B. Majhi, „IIR system identification using cat swarm optimization", Expert Syst. Appl.: an Int. J., vol. 38, no. 10, pp. 12671-12683, 2011 (DOI: 10.1016/j.eswa.2011.04.054).
  • [27] P.-W. Tsai, J.-S. Pan, S. M. Chen, and B. Y. Liao, „Enhanced paralel cat swarm optimization based on the Taguchi method", Expert Syst. with Appl., vol. 39, no. 7, pp. 6309-6319, 2012 (DOI:10.1016/j.eswa.2011.11.117).
  • [28] L. Pappula and D. Ghosh, „Linear antenna array synthesis using cat swarm optimization", AEU - Int. J. Electron. Commun., vol. 68, no. 6, pp. 540-549, 2014 (DOI: 10.1016/j.aeue.2013.12.012).
  • [29] J. Wang, „A new cat swarm optimization with adaptive parameter control", in Genetic and Evolutionary Computing: Proceeding of the Eighth International Conference on Genetic and Evolutionary Computing, October 18-20, 2014, Nanchang, China, H. Sun et al., Eds. AISC, vol. 329, pp. 69-78. Springer, 2015 (DOI: 10.1007/978-3-319-12286-1 8).
  • [30] T. Nireekshana, G. Kesava Rao, and S. Sivanaga Raju, „Available transfer capability enhancement with FACTS using cat swarm optimization", Ain Shams Engin. J., vol. 7, no. 1, pp. 159-167, 2016 (DOI: 10.1016/j.asej.2015.11.011).
  • [31] L. Pappula and D. Ghosh, „Synthesis of linear aperiodic array using Cauchy mutated cat swarm optimization", AEU - Int. J. of Electron. and Commun., vol. 72, pp. 52-64, 2017 (DOI: 10.1016/j.aeue.2016.11.016).
  • [32] L. Pappula and D. Ghosh, „Cat swarm optimization with normal mutation for fast convergence of multimodal functions", Appl. Soft Comput., vol. 66, pp. 473-491, 2018 (DOI: 10.1016/j.asoc.2018.02.012).
  • [33] R. Rajakumar, J. Amudhavel, P. Dhavachelvan, and T. Vengattaraman, „GWO-LPWSN: Grey Wolf optimization algorithm for node localization problem in wireless sensor networks", J. of Comp. Netw. and Commun., vol. 2, pp. 1-10, 2017 (DOI:10.1155/2017/7348141).
  • [34] X. Li and K. M. Luk, „The grey wolf optimizer and its applications in electromagnetics", IEEE Trans. on Antenn. and Propag., vol. 68, no. 3, 2020 (DOI: 10.1109/TAP.2019.2938703).
  • [35] M. Rajeswari, J. Amudhavel, S. Pothula, and P. Dhavachelvan, "Directed bee colony optimization algorithm to solve the nurse rostering problem", Computat. Intell. and Neurosci., vol. 2017, Article ID 6563498, 2017 [Online]. Available: https://downloads.hindawi.com/journals/cin/2017/6563498.pdf
  • [36] R. S. Raghav, J. Amudhavel, and P. Dhavachelvan, „Enhanced artificial bee colony optimization for solving economic load dispatch, IIOAB J., vol. 8, no. 2, pp. 208-216, 2017 [Online]. Available: https://www.iioab.org/IIOABJ 8.2 208-216.pdf
  • [37] S.-C. Chu and P.-W. Tsai, „Computational intelligence based on the behavior of cats", Int. J. Innov. Comput., Inform. and Contr. (IJICIC), vol. 3, no. 1, pp. 163-173, 2007 [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.3698&rep=rep1&type=pdf
  • [38] X. Yao, Y. Liu, and G. M. Lin, „Evolutionary programming made faster", IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82-102, 1999 (DOI: 10.1109/4235.771163).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a148acd-e23d-48b7-aa6e-4d1ddf2d13df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.