Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A single unit impact absorber is a ball absorber located in a mechanical system to attenuate its undesirable vibration. The absorber has a free motion constrained by stops. Collisions between the main system and the absorber masses help to dissipate kinetic energy as heat, noise and high frequency vibrations and thus reducing the main system dynamic response. However, the collisions give rise to discontinuity and strong nonlinearity. This work intends to study the effect of the collision modeling on the absorber efficiency. The contact force-based linear viscoelastic model of Hook-Newton, nonlinear elastic model of Hertz, and nonlinear viscoelastic model proposed by Hunt and Crossley are considered. For each case, analytical study is conducted to determine the equations of motion. The system responses are obtained for forced vibration, considering the whole ball motion cycle: left impact-free motion-right impact and following a numerical resolution based on the Newmark method. Finally, comparison of different impact models is made to conclude on the single unit impact absorber performance.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
947--956
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Laboratory of Applied Mechanics and Engineering (LMAI), National Engineering School of Tunis (ENIT), University of Tunis el Manar (UTM), Tunis, Tunisia
autor
- Laboratory of Applied Mechanics and Engineering (LMAI), National Engineering School of Tunis (ENIT), University of Tunis el Manar (UTM), Tunis, Tunisia
autor
- Laboratory of Applied Mechanics and Engineering (LMAI), National Engineering School of Tunis (ENIT), University of Tunis el Manar (UTM), Tunis, Tunisia
Bibliografia
- 1. Afsharfard A., Farshidianfar A., 2012, An efficient method to solve the strongly coupled nonlinear differential equations of impact dampers, Archive of Applied Mechanics, 82, 977-984
- 2. Alves J., Peixinho N., Da Silva M.T., Flores P., Lankarani H.M., 2015, A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids, Mechanism and Machine Theory, 85, 172-188
- 3. Anagnostopoulos S.A., 2004, Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems, Earthquake Engineering and Structural Dynamics, 33, 897-902
- 4. Bapat C.N., Sankar S., 1985, Single unit impact damper in free and forced vibration, Journal of Sound and Vibration, 99, 85-94
- 5. Caserta A.J., Navarro H.A., Cabezas-Gomez L., 2016, Damping coefficient and contact duration relations for continuous nonlinear spring-dashpot contact model in DEM, Powder Technology, 302, 462-479
- 6. Cheng C.C., Wang J.Y., 2003, Free vibration analysis of a resilient impact damper, International Journal of Mechanical Sciences, 45, 589-604
- 7. Cheng J., Xu H., 2006, Inner mass impact damper for attenuating structure vibration, International Journal of Solids and Structures, 43, 5355-5369
- 8. Cheng J., Xu H., 2007, Periodic motions, bifurcation, and hysteresis of the vibro-impact system, Mechanics Based Design of Structures and Machines, 35, 179-203
- 9. Ema S., Marui E., 1996, Damping characteristics of an impact damper and its application, International Journal of Machine Tools and Manufacture, 36, 293-306
- 10. Gilardi G., Sharf I., 2002, Literature survey of contact dynamics modeling, Mechanism and Machine Theory, 37, 1213-1239
- 11. Grubin C., 1956, On the theory of the acceleration damper, Journal of Applied Mechanics, 23, 373-378
- 12. Hunt K.H., Crossley F.R.E., 1975, Coefficient of restitution interpreted as damping in vibroimpact, Journal of Applied Mechanics, 42, 440-445
- 13. Lieber P., Jensen D.P., 1945, An acceleration damper: development, design, and some applications, Transactions of ASME, 67, 523-530
- 14. Lu Z., Wang Z., Masri S.F., Lu X., 2017, Particle impact dampers: past, present, and future, Structural Control Health Monitoring, 25, 1-25
- 15. Marhadi K.S., Kinra V.K., 2005, Particle impact damping: effect of mass ratio, material and shape, Journal of Sound and Vibration, 283, 433-448
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a134608-6635-4f11-bae1-a21b7e847adc