PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Role of Cathode Heat in the Schottky Correction in the Ionization Layers of Arc Plasma

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Enhancing lighting intensity while reducing costs is a primary focus. Lamp illumination has been refined by adjusting halide concentrations and pinpointing optimal thermal zones for maximum brightness. Arc discharge, particularly in high-intensity discharge (HID) lamps, plays a pivotal role in lighting technology and system upgrades. This study delves into the plasma processes of the ionization layers near the cathode surface, where we noticed that as the temperature increases, both ( T_e,∆_A,Ø_b) increase, also, notice an increase in the voltage barrier as a result of the collision between the electrons that leads to a loss of energy, and this leads to a decrease in the current density as a result of the high energy gap. That is, the value of the work function increases As a result of the increase in the energy of the electrons, which plays a major role in the processes of ionization and excitation, this is reflected in an increase in the temperature of the electron and a decrease in the voltage, especially at a voltage of 20 V, meaning that increasing the voltage difference from (10 to 20) V leads to a significant decrease in the voltage barrier, especially at temperatures greater than (Tw=3800 K), and this leads to increase the temperature of the electron as a result of increasing the energy of the electrons so, at low temperatures, we notice that the effective work function increases in both cases (10.20) V with the decrease in the potential difference of the plasma layers at the cathode surface proximity, and it has a maximum value at 20V. The difference in concentration plays a crucial part in increasing the temperature and decreasing the voltage barrier with the difference in the applied voltage.
Twórcy
  • Department of Physics, College Science, Mustansiriyah University Baghdad, Iraq
  • Department of Physics, College Science, Mustansiriyah University Baghdad, Iraq
  • Department of Physics, College Science, Mustansiriyah University Baghdad, Iraq
Bibliografia
  • 1. Mou X., Gladwin D.T., Zhao R., Sun H. Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging, IET Power Electronics 2019; 12(12): 3005–3020.
  • 2. Rayan B.A., Subramaniam U., Balamurugan S. Wireless power transfer in electric vehicles: A review on compensation topologies, coil structures, and safety aspects, Energies 2023; 16(7): 3084.
  • 3. Alghrairi M., Sulaiman N., Mutashar S., Wan Hasan W.Z., Jaafar H., Algriree W. Designing and analyzing multi-coil multi-layers for wireless power transmission in stent restenosis coronary artery, AIP Advances 2022; 12(12): 125315, 10.1063/5.0121532.
  • 4. Yenil V. and Cetin S, High efficiency implementation of constant voltage control of LC/S compensated wireless charging system for stationary electrical vehicles, Electrical Engineering 2022; 104(5): 3197–3206. doi: 10.1007/s00202-022-01537-0.
  • 5. Das H.S., Rahman M.M., Li S., Tan C.W. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review, Renewable and Sustainable Energy Reviews 2020; 120: 109618.
  • 6. Xiao C., Cao B., Liao C. A fast construction method of resonance compensation network for electric vehicle wireless charging system, IEEE Transactions on Instrumentation and Measurement 2021; 70: 1–9.
  • 7. Amjad M., Farooq-i-Azam M., Ni Q., Dong M., Ansari E.A. Wireless charging systems for electric vehicles, Renewable and Sustainable Energy Reviews 2022; 167: 112730.
  • 8. Mou W. and Lu M. Research on shielding and electromagnetic exposure safety of an electric vehicle wireless charging coil, Progress In Electromagnetics Research C 2021; 117: 55–72.
  • 9. Gnanavendan S., Selvaraj S.K., Dev S.J., Mahato K.K. Challenges, solutions and future trends in EV-Technology: A Review, IEEE Access, 2024.
  • 10. Mohamed A.A.S., Shaier A.A., Metwally H., Selem S.I. An overview of dynamic inductive charging for electric vehicles. Energies 2022; 15(15): 5613. [Online]. Available: https://www.mdpi.com/1996-1073/15/15/5613
  • 11. Loganathan N., Jaganadan H., Haynes Immuanel S., Gowtham Kumar Ks., Ajay S. Dynamic Wireless Charging and Cloud Based Metering of Electrical Vehicles, in 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), 17-18 March 2023; (1): 147–151. doi: 10.1109/ICACCS57279.2023.10112858.
  • 12. Mohamed A.A., Shaier A.A., Metwally H., and Selem S.I. An overview of dynamic inductive charging for electric vehicles, Energies 2022; 15(15): 5613.
  • 13. Alghrairi M., Sulaiman N., Hasan W.Z.W., Jaafar H., Mutashar S. Analysis of Four Coils by Inductive Powering Links for Powering Bio-implantable Sensor 2022.
  • 14. Zhang X., Ma X., Yuan Z., Xu F., Chen Z., and Wang F. Misalignment-Tolerant Integration for S-$LCC$-Compensated WPT Systems: A Complementary-Coupling Compact Receiver, IEEE Transactions on Power Electronics 2023; 38(10): 11907–11915. doi: 10.1109/TPEL.2023.3297657.
  • 15. Sagar A., Kashyap A., Nasab M.A., Padmanaban S., Bertoluzzo M., Kumar A., Blaabjerg F. A comprehensive review of the recent development of wireless power transfer technologies for electric vehicle charging systems, IEEE Access 2023.
  • 16. B. Manivannan, P. Kathirvelu, R. Balasubramanian, A review on wireless charging methods–The prospects for future charging of EV, Renewable Energy Focus 2023.
  • 17. Okasili I., Elkhateb A., Littler T. A review of wireless power transfer systems for electric vehicle battery charging with a focus on inductive coupling,” Electronics 2022; 11(9): 1355.
  • 18. Li L., Wang Z., Gao F., Wang S., Deng J. A family of compensation topologies for capacitive power transfer converters for wireless electric vehicle charger,” Applied Energy 2020; 260: 114156.
  • 19. Safayatullah M., Elrais M.T., Ghosh S., Rezaii R., Batarseh I. A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications, IEEE Access 2022; 10: 40753–40793.
  • 20. Zhang Z., Zheng S., Yao Z., Xu D., Krein P.T., Ma H. Analysis, design, and implementation of a spatially nested magnetic integration method for inductive power transfer systems, IEEE Transactions on Power Electronics 2021; 36(7): 7537–7549. doi: 10.1109/TPEL.2020.3045453.
  • 21. Nguyen H.T., Alsawalhi J.Y., Al Hosani K.H., Al-Sumaiti A., Al Jaafari K., El Moursi M. Review map of comparative designs for wireless high-power transfer systems in EV applications: Maximum efficiency, ZPA, and CC/CV modes at fixed resonance frequency independent from coupling coefficient, IEEE Transactions on Power Electronics 2021; 37(4), 4857–4876.
  • 22. Tan L., Zhang M., Wang S., Pan S., Zhang Z., Li J., Huang X. The design and optimization of a wireless power transfer system allowing random access for multiple loads. Energies 2019; 12(6): 1017. [Online]. Available: https://www.mdpi.com/1996-1073/12/6/1017.
  • 23. Yuan Z., Yang Q., Zhang X., Ma X., Chen Z., Xue M., Zhang P. High-order compensation topology integration for high-tolerant wireless power transfer. Energies 2023; 16(2): 638. [Online]. Available: https://www.mdpi.com/1996-1073/16/2/638.
  • 24. Jo S., Shin C.-S., Kim D.-H. Novel design method in wireless charger for SS topology with current/voltage self-limitation function. Applied Sciences 2023; 13(3): 1488.
  • 25. Yang J., Zhang X., Yang X., Liu Q., Sun Y. A hybrid compensation topology for battery charging system based on IPT technology. Energies 2019; 12(20): 3818. [Online]. Available: https://www.mdpi.com/1996-1073/12/20/3818.
  • 26. Li F., Zhang X., Zhu H., Li H., Yu C. An LCL-LC filter for grid-connected converter: topology, parameter, and analysis, IEEE Transactions on Power Electronics 2014; 30(9): 5067–5077.
  • 27. Hua Y., Zhou S., Cui H., Liu X., Zhang C., Xu X., Ling H., Yang S. A comprehensive review on inconsistency and equalization technology of lithium‐ion battery for electric vehicles, International Journal of Energy Research 2020; 44(14): 11059–11087.
  • 28. El-Shahat A. and Ayisire E. Novel electrical Modeling, design and comparative control techniques for wireless electric vehicle battery charging, Electronics 2021; 10(22): 2842.
  • 29. Tang W., Ma K., Song Y. Critical damping ratio to ensure design efficiency and stability of LCL filters, IEEE Transactions on Power Electronics 2020; 36(1), 315–325.
  • 30. Haupt L., Schöpf M., Wederhake L., Weibelzahl M. The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids, Applied energy 2020; 273: 115231.
  • 31. ALghrairi M.K., Sulaiman N., Wan Hasan W.H., Jaafar H. Simple and efficient transcutaneous inductive micro-system device based on ASK modulation at 6.78 MHz ISM Band, Tehnički vjesnik 2020; 27(5): 1478–1485.
  • 32. Bouanou T., El Fadil H., Lassioui A., Bentalhik I., Koundi M., El Jeilani S. Design methodology and circuit analysis of wireless power transfer systems applied to electric vehicles wireless chargers. World Electric Vehicle Journal 2023; 14(5): 117.
  • 33. Zhou J., Yao P., Guo K., Cao P., Zhang Y., Ma H. A heterogeneous inductive power transfer system for electric vehicles with spontaneous constant current and constant voltage output features. Electronics 2020; 9(11): 1978.
  • 34. Xie J., Li G., Jo S., Kim D.-H. A study on a fully integrated coil based on the LCCL-S compensation topology for wireless EVs charging systems. Applied Sciences 2023; 17: 9672. [Online]. Available: https://www.mdpi.com/2076-3417/13/17/9672.
  • 35. Xia N., Xu X., Zhang F., Zhu Y., Huang C., Lin J. The mechanism and optimization method of the capacitance team used in double-sided LCC compensation topology. IET Power Electronics 2023; 16(1): 92–101. doi: 10.1049/pel2.12365.
  • 36. Ren S., Yang P., Wang X., Xu J., Ma H. LCL/CLC resonant rectifier-based inductive power transfer systems with integrated coil structure and inherent CC and CV battery charging profile. IEEE Transactions on Transportation Electrification 2023; 1–1. doi: 10.1109/TTE.2023.3323971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a12ec78-d779-4ad4-8d17-efb7361d18a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.