Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article describes the problem of controlling an aircraft control when performing a landing on a curvilinear trajectory. The adoption of a curvilinear approach trajectory allows reducing the impact of air traffic on the areas adjacent to the airport. Performing the correct approach on the curvilinear path requires support. For the correct execution of the landing manoeuvre on the curvilinear track, it is necessary to establish reference points so that the repeatability of the manoeuvre is ensured, especially in the case of landing more than one aircraft at the same time. In the following parts, the landing control system is presented. Particularly carefully presented is the issue of performing tests of the designed control system, which in the case of the aircraft control system during the approach to landing must be extremely thoroughly verified. The test plan included both verification the correctness of the adopted control laws and their robustness to interference occurring as a result of atmospheric air streams.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--18
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wzory
Twórcy
autor
- Department of Avionics and Control, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
autor
- Department of Avionics and Control, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
Bibliografia
- [1] Federal Aviation Administration. NextGen priorities joint implementation plan; 2014. Available from: https://www.faa.gov/nextgen/media/ng_priorities.pdf
- [2] Voloshenyuk DA. Airplane landing by the curvilinear glide paths in limits of the border trajectories modelling method. Control Syst Comput. 2018 Jan;6(272):65-70. Available from: https://doi.org/10.15407/usim.2017.06.065
- [3] Pavlova S., Voloshenyuk DA. Method of aircraft landing by curvilinear glide paths within the boundary trajectories. Proc National Aviat Univ. 2017 Dec;73(4):36-43. Available from: https://doi.org/10.18372/2306-1472.73.12169
- [4] Bertsch L., Looye G., Anton E., Schwanke S. Flyover noise measurements of a spiraling noise abatement approach procedure. J Aircr. 2011;48(2):436-48. Available from: https://doi.org/10.2514/1.C001005
- [5] Bhattacharyya RP, Pritchett AR, German BJ. Designing air traffic concepts of operation for thin-haul aviation at small airports. AIAA IEEE Digit Avion Syst Conf Proc. 2017. Available from: https://doi.org/10.1109/DASC.2017.8102000
- [6] Volovoi V., Fraccone GC., Colón AE., Hedrick M., Kelley R. Agent-based simulation of off-nominal conditions during a spiral descent (NextGen Vehicle NRA). 9th AIAA Aviat Technol Integr Oper (ATIO) Conf Aircr Noise Emiss Reduct Symp (ANERS). 2009. Available from: https://doi.org/10.2514/6.2009-7046
- [7] Kulpiński B. Koncepcja procedury awaryjnej dolotu do lądowania w przypadku utraty mocy zespołu napędowego [Diploma thesis]. Rzeszów: Politechnika Rzeszowska; 2021.
- [8] Available from: https://www.nlr.org/news/the-endless-runway
- [9] Available from: https://eda.europa.eu/what-we-do/all-activities/activities-search/remotely-piloted-aircraft-systems---rpas
- [10] Available from: https://eda.europa.eu/what-we-do/all-activities/activities-search/remotely-piloted-aircraft-systems---rpas
- [11] Pieniążek J. Measurement of aircraft approach using airfield image. Measurement. 2019 Jul;141:396-406. Available from: https://doi.org/10.1016/j.measurement.2019.03.074
- [12] Brukarczyk B., Nowak D., Kot P., Rogalski T., Rzucidło P. Fixed wing aircraft automatic landing with the use of a dedicated ground sign system. Aerospace. 2021;8(6). Available from: https://doi.org/10.3390/aerospace8060167
- [13] Pieniążek J., Cieciński P. Aircraft landing control system test by simulation. In: Koruba Z, Krzysztofik I, Chatys R, Pawlikowski R, Stefański K, editors. Selected issues of modern aviation technologies. Kielce: Wydawnictwo Politechniki Świętokrzyskiej; 2021. p. 85-100.
- [14] Looye G. Helical flight path trajectories for autopilot evaluation. In: Holzapfel F, Theil S, editors. Advances in aerospace guidance, navigation and control. Berlin, Heidelberg: Springer; 2011. p. 79-90. Available from: https://doi.org/10.1007/978-3-642-19817-5_7
- [15] Kaminer I., Pascoal A., Hallberg E., Silvestre C. Trajectory tracking for autonomous vehicles: An integrated approach to guidance and control. J Guid Control Dyn. 1998;21(1):29-38. Available from: https://doi.org/10.2514/2.4229
- [16] Masłowski P. Longitudinal motion control for flare phase of landing. Trans Inst Aviat. 2011;(217):79-93.
- [17] Pieniążek J., Cieciński P. Landing control verification using simulation model. In: 9th EASN International Conference on Innovation in Aviation & Space; 2024 Sep 3; Athens, Greece.
- [18] International Civil Aviation Organization. ICAO 8168. Aircraft Operations. Volume I - Flight Procedures: ICAO; 2006. 279 p. Available from: http://www.spilve.lv/library/procedures/Doc%208168%20Volume%20I.pdf
- [19] Mikoś P. Krzywoliniowe podejście do lądowania [Diploma thesis]. Rzeszów: Politechnika Rzeszowska; 2021.
- [20] Pieniążek J., Cieciński P. Modelowanie ruchu samolotu do syntezy systemów sterowania w fazach startu i lądowania. In: Sibilski K, editor. Mechanika w lotnictwie ML-XVIII 2018 TOM II. Warsaw: Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej; 2018. p. 189-200.
- [21] Pieniążek J., Cieciński P. Control in curvilinear approach to landing. In: Aerospace Europe Conference; 2021 Nov 23; Warsaw, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a11c79e-4b1d-4b98-9fa9-3ed92f93a384