PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza systemów monitorowania w czasie rzeczywistym jakości procesów spawania laserowego. Cz. 2

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Analysis of the modern systems of the on-line monitoring of laser welding processes quality. P. 2
Języki publikacji
PL
Abstrakty
PL
Artykuł opisuje podstawy technologii spawania laserowego oraz przyczyny tworzenia się wad złączy spawanych laserowo. Przeprowadzono analizę właściwości czujników stosowanych w nowoczesnych systemach monitorowania w czasie rzeczywistym jakości procesów spawania laserowego oraz podano przykłady zastosowania sterowania adaptacyjnego w tych systemach monitorowania.
EN
The basics of laser welding technology and causes of the typical defects of laser welded joints are described. An analysis of the properties of sensors used in the modern systems of on-line monitoring of laser welding processes quality is carried out. Examples of the applications of adaptive control in these systems are provided.
Rocznik
Tom
Strony
76--79
Opis fizyczny
Bibliogr. 87 poz., rys., wykr.
Twórcy
  • Katedra Spawalnictwa, Politechnika Śląska
Bibliografia
  • 1. Klimpel: Technologie laserowe. Podręcznik akademicki. Wyd. Pol. Śląskiej. Arkuszy wyd. 22. Gliwice 2012.
  • 2. Josefine Svenungsson et al.: Laser welding process – a review of keyhole welding modelling. Physics Procedia 78 (2015) 182 – 191.
  • 3. D. Y. You, X. D. Gao and S. Katayama. Review of laser Welding Monitoring. Science and Technology of Welding and Joining, April 2014, 1-22.
  • 4. I. Eriksson and A. F. H. Kaplan: ‘Evaluation of laser weld monitoring-a case study’, Proc. Conf. ICALEO 2009, Orlando, FL, USA, 2009, Laser Institute of America, 1419–1425.
  • 5. Lijin Huang, et al.: Role of welding speed on keyhole-induced porosity formation based on experimental and numerical study in fiber laser welding of Al alloy. The International Journal of Advanced Manufacturing Technology (2019) 103:913–925. https://doi.org/10.1007/s00170-019-03502-x.
  • 6. M. M. Alam: ‘A study of the fatigue behaviour of laser and hybrid laser welds’, Licentiate Thesis, Lulea University of Technology, Lulea°, Sweden, 2009.
  • 7. X. L. Chen, et al.: ‘Effects of grain size and precipitation on liquation cracking of AZ61 magnesium alloy laser welding joints’, Sci. Technol. Weld. Join., 2013, 18, 458–465.
  • 8. L. Cui, et al.: ‘Study on microtexture of laser welded 5A90 aluminium–lithium alloys using electron backscattered diffraction’, Sci. Technol. Weld. Join., 2013, 18, 204–209.
  • 9. V. V. Avilov, et al.: ‘PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support’, Sci. Technol. Weld. Join., 2012, 17, 128–133.
  • 10. Y. Kawahito, M. Mizutani and S. Katayama: ‘High quality welding of stainless steel with 10 kW high power fibre laser’, Sci. Technol. Weld. Join., 2009, 14, 288–294.
  • 11. Wei Meng et al.: The influence of various factors on the geometric profile of laser lap welded T-joints. International Journal of Advanced Manufacturing Technology. October 2014, 74:1625–1636.
  • 12. Seiji Katayama, et al.: Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. 1875-3892, 2010 Published by Elsevier B.V. doi:10.1016/j.phpro.2010.08.024.
  • 13. Jan Frostevarg: Factors affecting weld root morphology in laser keyhole welding. Optics and Lasers in Engineering 101 (2018) 89–98.
  • 14. John Stavridis, et al.: Quality assessment in laser welding: a critical review. Journal of Advanced Manufacturing Technology. (2018) 94:1825–1847.
  • 15. A. Kaplan et al.: STATE-OF-THE-ART OF MONITORING AND IMAGING OF LASER WELDING DEFECTS. Project DATLAS, no. 27744-2, project HYBRIGHT, no. 27382-2, and project LOST, no. 2006-00563.
  • 16. S. S. Rodil, et al.: ‘Laser welding defects detection in automotive industry based on radiation and spectroscopical measurements’, Int. J. Adv. Manuf. Technol., 2010, 49, 133–145.
  • 17. P. Norman, J. Karlsson and A. F. H. Kaplan: ‘Monitoring undercut, blowouts and root sagging during laser beam welding’, Proc. 5th Int. WLT-Conference on ‘Lasers in manufacturing’, Munich, Germany, 2009, 1–5.
  • 18. M. Geiger and C. Kageler: ‘Michael Schmidt, High-power laser welding of contaminated steel sheets’, Prod. Engineer., 2008, 2, 235–240.
  • 19. Arianna Elefante, et al: Detecting beam offsets in laser welding of closed-square-butt joints by wavelet analysis of an optical process signal. Optics and Laser Technology 109 (2019) 178–185.
  • 20. H. Luo, et al.: ‘Application of artificial neural network in laser welding defect diagnosis’, J. Mater. Process. Technol., 2005, 170, 403–411.
  • 21. X. Gao, et al.: ‘Analysis of characteristics of spatters during high-power disk laser welding’, Acta Phys. Sin., 2012, 61, 098103-1-8.
  • 22. Y. Zhang, et al.: ‘Coaxial monitoring of the fibre laser lap welding of Zn-coated steel sheets using auxiliary illuminant’, Opt. Laser Technol., 2013, 50, 167–175.
  • 23. R. Olsson and A. F. H. Kaplan: ‘Challenges to the interpretation of the electromagnetic feedback from laser welding’, Opt. Laser Eng., 2011, 49, 188–194,
  • 24. T. Wang, et al.: ‘Study of dynamic features of surface plasma in high-power disk laser welding’, Plasma Sci. Technol., 2012, 14, 245–251.
  • 25. Brock, R. Hohenstein and M. Schmidt: ‘Towards fast tracking of the keyhole Geometry’, Phys. Procedia, 2011, 12, 697–703.
  • 26. T. Ohnishi, et al.: ‘Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content’, Sci. Technol. Weld. Join., 2013, 18,314–322.
  • 27. X. Gao, D. You and S. Katayama: ‘Infrared image recognition for seam tracking monitoring during fiber laser welding’, Mechatronics, 2012, 22, 370–380.
  • 28. X. Gao, D. You and S. Katayama: ‘Seam tracking monitoring based on adaptive Kalman filter embedded Elman neural network during high-power fiber laser welding’, IEEE Trans. Ind. Electron., 2012, 59, 4315–4325.
  • 29. S. Tsukamoto: ‘High speed imaging technique Part 2 – High speed imaging of power beam welding phenomena’, Sci. Technol. Weld. Join., 2011, 16, 44–55.
  • 30. ‘Welding-electron and laser-beam welded joints-Guidance on quality levels for imperfections-Part1 Steel’, EN ISO 13919-1, 1997, Section 4, 1–8.
  • 31. S. S. Kaierle, et al.: ‘Understanding the laser process-new approaches for process monitoring in laser materials processing’, Laser Technik J., 2010, 7, 49–52.
  • 32. F. Abt, et al.: ‘Online measurement and closed loop control of penetration depth in laser welding processes’, Proc. Conf. ICALEO 2011, Orlando, FL, USA, 2011, Laser Institute of America, 23–27.
  • 33. Brock, R. Hohenstein and M. Schmidt: ‘Optical 3D position sensor for the fast tracking of light sources’, Phys. Proced., 2010, 5, 437–445.
  • 34. You, X. Gao and S. Katayama: ‘Multiple-optics sensing of high-brightness disk laser welding process’, NDT & E Int., 2013, 60, 32–39.
  • 35. Kong, et al.: ‘Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration’, Opt. Laser Technol., 2012, 44, 2186–2196.
  • 36. D. You, X. Gao and S. Katayama: ‘Monitoring of high-power laser welding using high-speed photographing and image processing’, Mech. Syst. Signal Pr., 2013, to be published.
  • 37. C. K. Fang, et al.: ‘Far-field initial response of acoustic emission from cracking in a weldment’, J. Manuf. Sci. E, 1997, 119E, 281–289.
  • 38. H. Zeng, et al.: ‘Wavelet analysis of acoustic emission signals and quality control in laser welding’, J. Laser Appl., 2001, 13, 167–173.
  • 39. W. Huang and R. Kovacevic: ‘Feasibility study of using acoustic signals for online monitoring of the depth of weld in the laser welding of high-strength steels’, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 2009, 223, 343–361.
  • 40. W. Huang and R. Kovacevic: ‘Acoustic Monitoring of weld penetration during laser welding of high strength steels’, Proc. Conf. ICALEO 2009, Orlando, FL, USA, 2009, Laser Institute of America, 630–637.
  • 41. W. Huang and R. Kovacevic: ‘A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures’, J. Intell. Manuf., 2011, 22, 131-143.
  • 42. T. Sibillano, A. Ancona, V. Berardi and P. M. Lugara: ‘Correlation analysis in laser welding plasma’, Opt. Commun., 2005, 251, 139–148.
  • 43. Y. Kawahito, et al.: ‘Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser’, Sci. Technol. Weld. Join., 2008, 13, 749–753.
  • 44. Y. Kawahito, et al.: ‘Characterisation of plasma induced during high power fibre laser welding of stainless steel’, Sci. Technol. Weld. Join., 2008, 13, 744–758.
  • 45. S. S. Rodil, et al.: ‘Laser welding defects detection in automotive industry based on radiation and spectroscopical measurements’, Int. J. Adv. Manuf. Technol., 2010, 49, 133–145.
  • 46. M. Schmidt, A. Otto and C. Kageler: ‘Analysis of YAG laser lap welding of zinc coated steel sheets’, CIRP Annals Manuf. Technol., 2008, 57, 213–216.
  • 47. M. Schmidt, et al.: ‘Process control in laser manufacturing-dream or reality’, Proc. Conf. ICALEO 2007, Orlando, FL,USA, 2007, Laser Institute of America, 1087–1096.
  • 48. D. Colombo and B. Previtali: ‘Fiber laser welding of titanium alloys and its monitoring through the optical combiner’, Proc. Conf. ICALEO 2009, Orlando, FL, USA, 2009, Laser Institute of America, 620–629.
  • 49. A. Molino, M. Martina, et al: ‘FPGA implementation of time–frequency analysis algorithms for laser welding monitoring’, Microprocess. Microsystems, 2009, 33, 179–190.
  • 50. D’Angelo: ‘Studying the quality of laser welding process using time-frequency distributions with rotated kernel’, Proc. Conf. ICALEO 2008, Temecula, USA, 2008, Laser Institute of America, 807–813.
  • 51. Eriksson: ‘Optical monitoring and analysis of laser welding’, Licentiate Thesis, Lulea° University of Technology, Lulea°, Sweden, 2011.
  • 52. R. Olsson: ‘Signal processing and high-speed imaging as monitoring tools for pulsed laser welding’, Licentiate Thesis, Lulea° University of Technology, Lulea, Sweden, 2009.
  • 53. A. Kaplan, et al.: ‘Analysis of the keyhole and weld pool dynamics by imaging evaluation and photodiode monitoring’, Proc. 5th Int Cong. on ‘Laser advanced materials processing’, Kobe, Japan, 2009, 1–6.
  • 54. P. Norman, and A. F. H. Kaplan: ‘Monitoring laser beam welding of zinc coated sheet metal to analyze the defects occurring’, Proc. NOLAMP Conf., Copenhagen, Denmark, 2009.
  • 55. M. Geiger and C. Kageler: ‘Michael Schmidt, High-power laser welding of contaminated steel sheets’, Prod. Engineer., 2008, 2, 235–240.
  • 56. Y. Kawahito and S. Katayama: ‘In-Process monitoring and adaptive control during pulsed YAG laser spot welding of aluminum alloy thin sheets’, J. Laser Micro/Nanoeng., 2006, 1, 33–38.
  • 57. Dorsch, et al.: ‘Detection of faults in laser beam welds by near-infrared camera observation’, Proc. Conf. ICALEO 2012, Anaheim, USA, 2012, Laser Institute of America, 212–219.
  • 58. C. Kim and D. Ahn: ‘Coaxial monitoring of keyhole during Yb:YAG laser welding’, Opt. Laser Technol., 2012, 44, 1874–1880.
  • 59. Z. Fang, D. Xu and M. Tan: ‘A vision-based self-tuning fuzzy controller for fillet weld seam tracking’, IEEE/ASME Trans. Mechatr., 2011, 16, 540–550.
  • 60. X. Gao, at al.: ‘Neural network model for recognizing joint offset during fiber laser welding’, Weld. J., 2013, 92, 251–257.
  • 61. T. Sibillano, et al.: ‘Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminum alloys’, Opt. Laser Eng., 2006, 44, 1324–1335.
  • 62. D. Rizzi, et al.: ‘Spectroscopic, energetic and metallographic investigations of the laser lap welding of AISI304 using the response surface methodology’, Opt. Laser Eng., 2011, 49, 892–898.
  • 63. I. Smurov: ‘Laser process optical sensing and control’, IV International WLT-Conference on Lasers in Manufacturing, 2007, 537–546.
  • 64. L. Liy, et al.: ‘Plasma charge sensor for in-process, non-contact monitoring of the laser welding process’, Meas. Sci. Technol., 1996, 7, 615–626.
  • 65. Y. M. Zhang, S. B. Zhang and Y. C. Liu: ‘A plasma cloud charge sensor for pulse keyhole process control’, Meas. Sci. Technol.,2001, 12, 1365–1370.
  • 66. L. M. Liu, S. T. Yuan and C. B. Li: ‘Effect of relative location of laser beam and TIG arc in different hybrid welding modes’, Sci. Technol. Weld. Join., 2012, 17, 441–446.
  • 67. K. Kamimuki, T. Inoue and K. Yasuda: ‘Behaviour of monitoring signals during detection of welding defects in YAG laser welding. Study of monitoring technology for YAG laser welding (Report 2)’, Weld. Int., 2003, 17, 203–210.
  • 68. P. Zhang, et al: ‘Real-time monitoring of laser welding based on multiple sensors’, Proc. Control and Decision Conf., Beijing, China, 2008, 1746–1748.
  • 69. F. Dorsch, et al.: ‘Process sensor systems for laser beam welding’, Laser Technik J., 2012, 9, 24–28.
  • 70. P. M. Mickel, et al.: ‘Quality and process control of laser welding using multisensory systems and methods of pattern recognition’, Proc. LANE, Germany, 2007, 957–966.
  • 71. Teng Wang et al.: Real-time Monitoring for Disk Laser Welding Based on Feature Selection and SVM. Appl. Sci. 2017, 7, 884; doi:10.3390/app7090884.
  • 72. D. Travis, et al.: ‘Sensing for monitoring of the laser-GMAW hybrid welding process’, Proc. Conf. ICALEO 2004, Orlando, FL, USA, 2004, Laser Institute of America, 33–40.
  • 73. J. Karlsson, et al. ‘Knowledge platform approach for fiber laser welding of high strength steel’, Proc. 12th NOLAMP Conf., Copenhagen, Denmark, 2009, 1–15.
  • 74. P. Norman, et al.: ‘Correlation between photodiode monitoring and high-speed imaging of the dynamics causing laser welding defects’, Proc. Conf. ICALEO 2008, Temecula, USA, 2008, Laser Institute of America, 829–837.
  • 75. J. Gedicke, et al.: ‘Comparison of different process monitoring methods for laser beam micro welding’, Proc. Conf. ICALEO 2006, Scottsdale, USA, 2006, Laser Institute of America, 262–268.
  • 76. X. Gao, X. Zhong, et al.: ‘Kalman filtering compensated by radial basis function neural network for seam tracking of laser welding’, IEEE Trans. Contr. Syst. T., 2013, 21, 1–8.
  • 77. Park, S. Rhee, D. Kim: ‘A fuzzy pattern recognition-based system for monitoring laser weld quality’, Meas. Sci. Technol., 2001, 12, 1318–1324.
  • 78. M. W. Graaf, J. O. Benneker, R. G. K. M. Aarts, J. Meijer and J. B. Jonker: ‘Robust process-controller for Nd: YAG welding’, Proc. Conf. ICALEO 2005, Miami, USA, 2005, Laser Institute of America, 1806.
  • 79. K. Tonshoff, et al.: ‘Increased performance and flexibility of process monitoring for deep penetration laser welding’, Proc. Conf. ICALEO 2002, Scottsdale, USA, 2002, Laser Institute of America, 1105–1113.
  • 80. X. Gao, et al.: ‘Detection of seam tracking offset based on infrared image during high power fiber laser welding’, Acta Phys. Sin., 2011, 60, 088105-1-8.
  • 81. X. Gao, et al.: ‘Study of characteristics of plume based on hue-saturation-intensity during high-power disk laser welding’, Acta Phys. Sin., 2012, 61, 148103-1-8.
  • 82. R. Olsson and A. F. H. Kaplan: ‘Pulsed laser weld quality monitoring by the statistical analysis of reflected light’, Proc. WLT Conf. on ‘Lasers in manufacturing’, Munich, Germany, 2009, 1–6.
  • 83. D. Naso, et al.: ‘A fuzzy-logic based optical sensor for online weld defect-detection industrial informatics’, IEEE Trans. Ind. Inform., 2005, 1, 259–273.
  • 84. M. Jauregui, et al.: ‘Design, implementation and testing of a fuzzy control scheme for laser welding’, J. Laser Appl., 2008, 20, 146–153.
  • 85. X. Gao, et al.: ‘Kalman filtering compensated by radial basis function neural network for seam tracking of laser welding’, IEEE Trans. Contr. Syst. T., 2013, 21, 1–8.
  • 86. M. Jauregui, et al.: ‘Design, implementation and testing of a fuzzy control scheme for laser welding’, J. Laser Appl., 2008, 20, 146–153.
  • 87. Y. Kawahito and S. Katayama: ‘In-process monitoring and feedback control during laser microspot lap welding of copper sheets’, J. Laser Appl., 2004, 16, 121–127.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a0f299b-f896-44b8-aac7-6ba30bd62479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.