PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Seismic running safety assessment for stochastic vibration of train–bridge coupled system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the rapid development of high-speed railway, the seismic running safety problem of high-speed train passing on bridge is becoming increasingly prominent. Since different wheel–rail contact states including uplifting, climbing up, detachment, recontact and derailment have been introduced into the simulation of train–bridge coupled (TBC) system, there are many problems arising for the mainstream derailment index in evaluating seismic running safety and stochastic analysis of train. To this end, a seismic running safety assessment for stochastic response of TBC system was first proposed in this paper. In this system, a detailed wheel–rail contact model was built to calculate the time-varying contact point and the contact force, which can be applied to simulate the detachment and recontact between the wheel flange and rail. Meanwhile, a stochastic analysis framework for derailment of the TBC system is developed. The stochastic vibration of a high-speed train traversing a multi-span prestressed simply supported box-girder bridge under earthquake with random magnitude was studied. In addition, an improved train running safety index, lateral wheel–rail relative displacement, was proposed and compared with the derailment factor and the offload factor to verify its feasibility. It shows an intuitive result as a derailment index in a stochastic train running safety analysis under earthquake. Furthermore, the lateral wheel–rail relative displacement and pertinent derailment probability were significantly affected by the intensity of the earthquake. The methodology herein can be helpful in seismic running safety assessment of high-speed train.
Rocznik
Strony
art. no. e180, 2022
Opis fizyczny
Bibliogr. 54 poz., fot., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Central South University, Changsha 410075, Hunan, China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, Hunan, China
  • School of Civil Engineering, Central South University, Changsha 410075, Hunan, China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, Hunan, China
  • Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu, China
  • Hunan International Scientific and Technological Innovation Cooperation Base of Advanced Construction and Maintenance Technology of Highway, Changsha University of Science & Technology, Changsha, China
  • Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
  • Chongqing Jiaotong University, National & Local Joint Laboratory of Transportation and Civil Engineering Materials, Chongqing, China
Bibliografia
  • [1] Guo W, Wang Y, Liu H, Long Y, Jiang L, Yu Z. Running safety assessment of trains on bridges under earthquakes based on spectral intensity theory. Int J Struct Stab Dyn. 2021. https://doi.org/10.1142/s0219455421400083.
  • [2] Ogura M. The Niigata Chuetsu Earthquake : railway response and reconstruction. Japan Railway & Transport Review. 2006(43–44).
  • [3] Ju SH. Nonlinear analysis of high-speed trains moving on Bridges during earthquakes. Nonlinear Dyn. 2012;69(1–2):173–83. https://doi.org/10.1007/s11071-011-0254-5.
  • [4] Zeng Q, Dimitrakopoulos EG. Derailment mechanism of trains running over bridges during strong earthquakes. Proc Eng. 2017;199:2633–8. https://doi.org/10.1016/j.proeng.2017.09.391.
  • [5] Xia H, Han Y, Zhang N, Guo WW. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations. Earthq Eng Struct D. 2006;35(12):1563–79. https://doi.org/10.1002/eqe.594.
  • [6] Jin ZB, Pei SL, Li XZ, Liu HY, Qiang SZ. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges. J Sound Vib. 2016;383:277–94. https://doi.org/10.1016/j.jsv.2016.06.048.
  • [7] Jin Z, Liu W, Pei S, He J. Probabilistic assessment of vehicle derailment based on optimal ground motion intensity measure. Veh Syst Dyn. 2020;59(11):1781–802. https://doi.org/10.1080/00423114.2020.1792940.
  • [8] Ju SH. A frictional contact finite element for wheel/rail dynamic simulations. Nonlinear Dyn. 2016;85(1):365–74. https://doi.org/10.1007/s11071-016-2691-7.
  • [9] Ju SH. A simple finite element for nonlinear wheel/rail contact and separation simulations. J Vib Control. 2014;20(3):330–8. https://doi.org/10.1177/1077546312463753.
  • [10] Ju SH, Hung SJ. Derailment of a train moving on bridge during earthquake considering soil liquefaction. Soil Dyn Earthq Eng. 2019;123:185–92. https://doi.org/10.1016/j.soildyn.2019.04.019.
  • [11] Zeng Q, Dimitrakopoulos EG. Vehicle-bridge interaction analysis modeling derailment during earthquakes. Nonlinear Dyn. 2018;93(4):2315–37. https://doi.org/10.1007/s11071-018-4327-6.
  • [12] GŁAdysz M, ŚNiady P. Spectral density of the bridge beam response with uncertain parameters under a random train of moving forces. Arch Civ Mech Eng. 2009;9(3):31–47. https://doi.org/10.1016/S1644-9665(12)60216-7.
  • [13] Lou P, Zhu J, Dai G, Yan B. Experimental study on bridge-track system temperature actions for Chinese high-speed railway. Arch Civ Mech Eng. 2018;18(2):451–64. https://doi. org/ 10. 1016/j.acme.2017.08.006.
  • [14] Zhang ZC, Lin JH, Zhang YH, Howson WP, Williams FW. Non-stationary random vibration analysis of three-dimensional train-bridge systems. Veh Syst Dyn. 2010;48(4):457–80. https://doi.org/10.1080/00423110902866926.
  • [15] Zeng ZP, Zhao YG, Xu WT, Yu ZW, Chen LK, Lou P. Random vibration analysis of train-bridge under track irregularities and traveling seismic waves using train-slab track-bridge interaction model. J Sound Vib. 2015;342:22–43. https://doi.org/10.1016/j.jsv.2015.01.004.
  • [16] Mao JF, Yu ZW, Xiao YJ, Jin C, Bai Y. Random dynamic analysis of a train-bridge coupled system involving random system parameters based on probability density evolution method. Probabi Eng Mech. 2016;46(Oct.):48–61. https://doi.org/10.1016/j.probengmech.2016.08.003.
  • [17] Xu L, Zhai W. Stochastic analysis model for vehicle-track coupled systems subject to earthquakes and track random irregularities. J Sound Vib. 2017;407:209–25. https://doi.org/10.1016/j.jsv.2017.06.030.
  • [18] Liu X, Xiang P, Jiang LZ, Lai ZP, Zhou T, Chen YJ. Stochastic analysis of train-bridge system using the Karhunen-Loeve expansion and the point estimate method. Int J Struct Stabil Dyn.2020;20:2. https://doi.org/10.1142/S021945542050025x.
  • [19] Jiang LZ, Liu X, Xiang P, Zhou WB. Train-bridge system dynamics analysis with uncertain parameters based on new point estimate method. Eng Struct. 2019. https://doi.org/10.1016/j.engst ruct.2019.109454.
  • [20] Liu X, Jiang LZ, Lai ZP, Xiang P, Chen YJ. Sensitivity and dynamic analysis of train-bridge coupled system with multiple random factors. Eng Struct. 2020. https://doi.org/10.1016/j.engst ruct.2020.111083.
  • [21] Zeng Q, Dimitrakopoulos EG. Seismic response analysis of an interacting curved bridge-train system under frequent earthquakes. Earthq Eng Struct D. 2016;45(7):1129–48. https:// doi. org/ 10.1002/eqe.2699.
  • [22] Nishimura K, Terumichi Y, Morimura T, Sogabe K. Development of vehicle dynamics simulation for safety analyses of rail vehicles on excited tracks. J Comput Nonlinear Dyn. 2009;4(1): 011001.https://doi.org/10.1115/1.3007901.
  • [23] Luo X. Study on methodology for running safety assessment of trains in seismic design of railway structures. Soil Dyn Earthq Eng. 2005;25(2):79–91. https://doi.org/10.1016/j.soildyn.2004.10.005.
  • [24] Tanabe M, Goto K, Watanabe T, Sogabe M, Wakui H, Tanabe Y. A simple and efficient numerical model for dynamic interaction of high speed train and railway structure including derailment during an earthquake. In: X International Conference on Structural Dynamics (Eurodyn 2017). 2017;199:2729–34. https://doi.org/10.1016/j.proeng.2017.09.298.
  • [25] Nishimura K, Terumichi Y, Morimura T, Adachi M, Morishita Y, Miwa M. Using full scale experiments to verify a simulation used to analyze the safety of rail vehicles during large earthquakes. J Comput Nonlinear Dyn. 2015;10(3): 031013. https://doi.org/10.1115/1.4027756.
  • [26] Du XT, Xu YL, Xia H. Dynamic interaction of bridge-train system under non-uniform seismic ground motion. Earthq Eng Struct D.2012;41(1):139–57. https://doi.org/10.1002/eqe.1122.
  • [27] Clough RW, Penzien J. Dynamics of structures. 2nd ed. New York: McGraw-Hill; 1995.
  • [28] Zhai W. Vehicle–track coupled dynamics: theory and applications. Springer Nature; 2020. https:// doi. org/ 10. 1007/978-981-32-9283-3.
  • [29] Newmark NM. A method of computation for structural dynamics. J Eng Mech Div. 1959;85(3):67–94. https://doi.org/10.1061/JMCEA3.0000098.
  • [30] Xu L, Li Z, Zhao YS, Yu ZW, Wang K. Modelling of vehicle-track related dynamics: a development of multi-finite-element coupling method and multi-time-step solution method. Veh Syst Dyn. 2020. https://doi.org/10.1080/00423114.2020.1847298.
  • [31] Lou P, Zeng QY. Formulation of equations of motion of finite element form for vehicle-track-bridge interaction system with two types of vehicle model (vol 62, pg 435, 2005). Int J Numer Meth Eng. 2006;65(12):2112. https://doi.org/10.1002/nme.1207.
  • [32] Xu L, Zhai WM. A three-dimensional model for train-track-bridge dynamic interactions with hypothesis of wheel-rail rigid contact. Mech Syst Signal Pr. 2019;132(Oct.1):471–89. https://doi.org/10.1016/j.ymssp.2019.04.025.
  • [33] Xu L, Lu T. Influence of the finite element type of the sleeper on vehicle-track interaction: a numerical study. Veh Syst Dyn. 2020;59(10):1533–56. https://doi.org/10.1080/00423114.2020.1769847.
  • [34] Xu L, Zhai W. Vehicle–track–tunnel dynamic interaction: a finite/infinite element modelling method. Railw Eng Sci.2021;29(2):109–26. https://doi.org/10.1007/s40534-021-00238-x.
  • [35] Xu L, Yu Z, Shan Z. Numerical simulation for train–track–bridge dynamic interaction considering damage constitutive relation of concrete tracks. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00266-8.
  • [36] Berrah MK, Kausel E. A modal combination rule for spatially varying seismic motions. Earthq Eng Struct D. 2010;22(9):791–800.
  • [37] Cheng Y-C, Chen C-H, Hsu C-T. Derailment and dynamic analysis of tilting railway vehicles moving over irregular tracks under environment forces. Int J Struct Stabil Dyn. 2017. https://doi.org/10.1142/s0219455417500985.
  • [38] Munoz S, Aceituno JF, Urda P, Escalona JL. Multibody model of railway vehicles with weakly coupled vertical and lateral dynamics. Mech Syst Signal Pr. 2019;115:570–92. https://doi.org/10.1016/j.ymssp.2018.06.019.
  • [39] Kalker JJ. Three-dimensional elastic bodies in rolling contact. Springer Science & Business Media; 2013.
  • [40] Shen ZY, Hedrick JK, Elkins JA. A comparison of alternative creep force models for rail vehicle dynamic analysis. Veh Syst Dyn. 2007;12(1–3):79–83. https://doi.org/10.1080/00423118308968725.
  • [41] Xu L, Liu XM. Matrix coupled model for the vehicle-track interaction analysis featured to the railway crossing. Mech Syst Signal Pr. 2021. https://doi.org/10.1016/j.ymssp.2020.107485.
  • [42] Chen JB, Sun WL, Li J, Xu J. Stochastic harmonic function representation of stochastic processes. J Appl Mech-T Asme. 2013;80(1):1001. https://doi.org/10.1115/1.4006936.
  • [43] He X, Nan Z, WeiWei G. Dynamic interaction of train-bridge systems in high-speed railways. Springer Berlin Heidelberg; 2018. https://doi.org/10.1007/978-3-662-54871-4.
  • [44] Zhang ZC, Zhang YH, Lin JH, Zhao Y, Howson WP, Williams FW. Random vibration of a train traversing a bridge subjectedto traveling seismic waves. Eng Struct. 2011;33(12):3546–58. https://doi.org/10.1016/j.engstruct.2011.07.018.
  • [45] Rosenblueth E. Two-point estimates in probabilities. Appl Math Model. 1981;5(5):329–35.
  • [46] Rosenblueth E. Point estimates for probability moments. Proc Natl Acad Sci USA. 1975;72(10):3812–4. https://doi.org/10.1073/pnas.72.10.3812.
  • [47] Ji K, Wen R, Ren Y, Wang W, Chen L. Disaggregation of probabilistic seismic hazard and construction of conditional spectrum for China. Bull Earthq Eng. 2021. https://doi.org/10.1007/s10518-021-01200-2.
  • [48] Xu WJ, Gao MT. Calculation of upper limit earthquake magnitude for Northeast seismic region of China based on truncated G-R model. Chin J Geophys. 2012;55(5):1710–7. https://doi.org/10.6038/j.issn.0001-5733.2012.05.027.
  • [49] Der Kiureghian A, Liu PL. Structural reliability under incomplete probability information. J Eng Mech. 1986;112(1):85–104. https://doi.org/10.1061/(asce)0733-9399(1986)112:1(85).
  • [50] Yu YX, Li SY, Xiao L. Development of ground motion attenuation relations for the new seismic hazard map of China. Technol Earthq Disaster Prev. 2013;8(1):24–33 (in Chinese).
  • [51] Kolassa JE. Series approximation methods in statistics. Springer Science & Business Media; 2006.
  • [52] Miyamoto T, Matsumoto N, Sogabe M, Shimomura T, Nishiyama Y, Matsuo M. Railway vehicle dynamic behavior against large-amplitude track vibration. Qr Rtri. 2004;45(3):111–5.
  • [53] Yu ZW, Mao JF. Probability analysis of train-track-bridge interactions using a random wheel/rail contact model. Eng Struct. 2017;144:120–38. https://doi.org/10.1016/j.engstruct.2017.04.038.
  • [54] Wei B, Hu Z, Zuo C, Wang W, Jiang L. Effects of horizontal ground motion incident angle on the seismic risk assessment of a high-speed railway continuous bridge. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-020-00169-0.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a0d4cb9-2bc8-4d03-ac81-f0d06a96bf6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.