PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transformation of Urbanozems in the Areas of Gas Stations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The areas near gas stations are places of local specific environmental pollution. The purpose of this work was to study the environmental consequences of gas station functioning on the surrounding soils (urbanozems). The content of oil products (OP), bulk and mobile forms of heavy metals, acute toxicity (Ceriodaphnia affinis Lillieborg, Раramecium caudatum Ehrenberg, Escherichia coli Migula), chronic toxicity (C. affinis), and the state of soil microphotrophs were determined. The content of OP was from 520±130 to 4820±100 mg/kg, which is significantly higher than the concentrations of OP in the soils of the transport zone of cities. The exceeding of the Russian standards for HM was found only for zinc (the maximum for the total form – 1.7 MPC, for the mobile form – 1.4 MPC). The urbanozems samples did not have acute toxicity; however, chronic toxicity in the bioassay for the mortality of C. affinis (up to 85%) and a decrease in the fertility of crustaceans (2–3 times compared to the control) were observed. In the structure of the community of soil microphototrophs, cyanobacteria dominated both in biomass and in abundance: (up to 748±10 thousand cells/1 g of soil) compared with green algae and diatoms (1.1–5.5 and 1.2–19.8 thousand cells/1 g of soil, respectively). As a result of the work, it was concluded that the quantitative algological analysis and biotest with the assessment of chronic toxicity in terms of mortality and fertility of C affinis for the diagnosis of local soil contamination in the areas of gas stations were of the highest informative value.
Twórcy
autor
  • Department of Ecology and Nature Management, Institute of Chemistry and Ecology, Vyatka State University, Krasnoarmeyskaya Str. 26, Kirov, 610001, Kirov region, Russia
  • Department of Ecology and Nature Management, Institute of Chemistry and Ecology, Vyatka State University, Krasnoarmeyskaya Str. 26, Kirov, 610001, Kirov region, Russia
Bibliografia
  • 1. Adamiec E., Jarosz-Krzeminska E., Wieszala R. 2016. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental monitoring and assessment, 188(6).
  • 2. Barros N., Carvalho M., Silva C., Fontes T., Prata J.C., Sousa A., Manso M.C. 2019. Environmental and biological monitoring of benzene, toluene, ethylbenzene and xylene (BTEX) exposure in residents living near gas stations. Journal of toxicology and environmental health-part a-current issues, 82(9), 550-563.
  • 3. Benedetti M.F., Miln C.J., Kinniburgh D.G., Van Riemsdijk W.H., Koopal L.K. 1995. Metal ion binding to humic substances: Application of the nonideal competitive adsorption model. Environmental Science and Technology. 29(2), 446–457.
  • 4. Correa S.M., Arbilla G., Marques M.R.C., Oliveira K.M.P.G. 2012. The impact of BTEX emissions from gas stations into the atmosphere. Atmospheric pollution research, 3(2), 163-169. DOI: 10.5094/APR.2012.016
  • 5. Davydov S.L., Tagasov V.I. 2002. Heavy metals like superecotoxicants the twenty-first century. M.: Publishing House of People’s Friendship University, 140 p.
  • 6. Domracheva L.I., Kondakova L.V., Zikova Y.N., Efremov V.A. 2013. Cyanobacteria urban soils. Environmental principles, 4, 10–27.
  • 7. Environmental Regulatory Document PND F 16.1:2.2.22-98. 2005. Method for measuring the mass fraction of petroleum products in mineral, organogenic, organomineral soils and bottom sediments by IR spectrometry. Moscow: FCAO. 21 p.
  • 8. Environmental Regulatory Document PND F T 14.1:2:3:4.11-04. T.16.1:2:3:3.8-04. 2010. Method for determining the integrated toxicity of surface waters, including marine, ground, drinking, waste waters, water extracts from soils, waste, sewage sludge by changes in bacterial bioluminescence using the «Ecolum test-system». Moscow: Nera-S, 30 p.
  • 9. Federal Register 1.39.2015.19243. 2015. Methods for determining the toxicity of soil samples, bottom sediments and sewage sludge by the express method using a device of the Biotester series. S.-Pb.: OOO SPEKTR-M, 21 p.
  • 10. Federal Register FR 1.31.2012.135739. 2012. Methods for measuring the mass fractions of toxic metals in soil samples by the atomic absorption method, 16 p.
  • 11. Federal Register FR 1.39.2007.03221. 2007. Methodology for determining the toxicity of water and water extracts from soils, sewage sludge, and waste by mortality and changes in fertility of ceriodaphnias. Moscow: Akvaros, 51 p.
  • 12. Flies E.J., Mavoa S., Zosky G.R., Mantzioris E., Williams C., Eri R., Brook B.W., Buettel J.C. 2019. Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environment international, 133, part A, article numer 105187. DOI: 10.1016/j.envint.2019.105187
  • 13. Fokina A.I., Domracheva L.I., Olkova A.S., Skugoreva S.G., Lalin E.I., Berezin G.I., Darovskikh L.V. 2016. Research toxicity urbanozem samples contaminated with heavy metals. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 18(2), 544–550.
  • 14. Gollerbakh M.M., Shtina E.A. 1969. Soil algae. L.: Science, 228 p.
  • 15. Guilland C., Maron P.A., Damas O., Ranjard L. 2018. Biodiversity of urban soils for sustainable cities. Environmental chemistry letters, 16(4), 1267-1282. DOI: 10.1007/s10311-018-0751-6
  • 16. Hsieh P.Y., Shearston J.A., Hilpert M. 2021. Benzene emissions from gas station clusters: a new framework for estimating lifetime cancer risk. Journal of environmental health science and engineering. DOI: 10.1007/s40201-020-00601-w
  • 17. Johnson T. 2016. Vehicular Emissions in Review. SAE international journal of engines, 9(2), 1258-1275. DOI: 10.4271/2016-01-0919
  • 18. Kabirov R.R., Sukhanov N.V. 1997. Soil algae urban lawns (Ufa, Bashkortostan). Botanical journal, 82(3), 46–57.
  • 19. Khaibullina L.S., Sukhanova N.V., Kabirov R.R. 2011. Flora and syntaxonomy soil algae and cyanobacteria urbanized areas. Ufa: Academy of Sciences of Belarus Guillem, 216 p.
  • 20. Kondakova L.V., Domracheva L.I. 2011. Specificity algo-mycological complexes urban soils. In: T.Yа. Ashihminа (Ed.) Biological monitoring natural and man-made systems. Syktyvkar, 267–287.
  • 21. Kondakova L.V., Pirogova O.S. 2014. Soil algae and cyanobacteria State Natural Reserve «Nurgush». Theoretical and Applied Ecology, 3, 94–101.
  • 22. Letter from the Ministry of Natural Resources of the Russian Federation No. 04-25, Roskomzem No. 61-5678 of 12/27/93 “On the procedure for determining the amount of damage from land pollution by chemical substances”, 1993.
  • 23. Manta D.S., Angelone M., Bellanca A., Neri R., Sprovieri M. 2002. Heavy metals in urban soils: a case study from the city of Palermo (Sicili), Itali. The Science of the Total Environment, 300(1–3), 229-243.
  • 24. Maximum permissible concentration (MPC) and roughly allowable concentration (ODC) of chemicals in the soil. 2006. Hygienic standards. 2.1.7.2041-06 GBV, GBV 2.1.7.2042-06. In the book: Bulletin of normative acts of the federal bodies of executive power, N 10, 06.03.2006, the official publication: Compendium. M.: Federal Center of Hygiene and Epidemiology.
  • 25. Mayorova O.I. 2002. About environmental pollution megacities in the operation of gas stations and complexes. M.: Publishing house MNOIZ, 200 p.
  • 26. Minenko E.Y., Kusmorova J.A. 2014. The dependence of the level of safety at level crossings on the size of the vehicle fleet. Austrian Journal of Technical and Natural Sciences. 9–10, 130–132.
  • 27. Murray M.H., Sanchez C.A., Becker D.J., Byers K.A., Worsley-Tonks K.E.L., Craft M.E. 2019. City sicker? A meta-analysis of wildlife health and urbanization. Frontiers in ecology and the environment, 17(10), 575-583. DOI: 10.1002/fee.2126
  • 28. Musikhina E.A. 2009. Methodological aspect of technology integrated assessment of ecological capacity of territories. M.: Academy of Natural Science, 137 p.
  • 29. Myung C.L., Ko A., Lim Y., Kim S., Lee J., Choi K., Park S. 2014. Mobile source air toxic emissions from direct injection spark ignition gasoline and LPG passenger car under various in-use vehicle driving modes in Korea. Fuel processing technology, 119, 19-31. DOI: 10.1016/j.fuproc.2013.10.013
  • 30. Nekrasova K.A., Busygina E.A. 1977. Some refinements to the method of quantitative accounting of soil algae. Botanical journal, 62(2), 214–222.
  • 31. Proshkina E.A. 1997. Influence of heavy metals on the community of soil and epiphytic algae: Abstract. Dis. ... cand. biol. sciences. Ufa, 20 p.
  • 32. Rolka E., Zolnowski A.C., Kozlowska K.A. 2020. Assessment of the content of trace elements in soils and roadside vegetation in the vicinity of some gasoline stations in Olsztyn (Poland). Journal of Elementology, 25(2), 549-563, DOI: 10.5601/jelem.2019.24.4.1914
  • 33. Shtina E.A., Gollerbakh M.M. 1976. Ecology of soil algae. M.: Nauka, 143 p.
  • 34. Getsen M.V. (Еd.) 2005. The natural environment of the tundra in open coal mining (for example, Yunyaginskogo mestorzhdeniya). Syktyvkar, 246 p.
  • 35. Ufimtseva M.D., Terekhina N.V. 2005. Phytoindication ecological state of the St. Petersburg urbogeosistem. S.-Pb. Science, 339 p.
  • 36. Olkova A.S., Berezin G.I., Ashikhmina T.Ya. 2016. Assessment of the state of soils in urban areas by chemical and ecological-toxicological methods. Povolzhsky ecological journal, 4, 411-423.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a05e2b5-b832-49bb-b6e1-142b32eefd8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.