PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved contrast in ultra-low-field mri with time-dependent bipolar prepolarizing fields: theory and nmr demonstrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spin-lattice (T1) relaxation rates of materials depend on the strength of the external magnetic field in which the relaxation occurs. This T1) dispersion has been suggested to offer a means to discriminate between healthy and cancerous tissue by performing magnetic resonance imaging (MRI) at low magnetic fields. In prepolarized ultra-low-field (ULF) MRI, spin precession is detected in fields of the order of 10-100 μT. To increase the signal strength, the sample is first magnetized with a relatively strong polarizing field. Typically, the polarizing field is kept constant during the polarization period. However, in ULF MRI, the polarizing-field strength can be easily varied to produce a desired time course. This paper describes how a novel variation of the polarizing-field strength and duration can optimize the contrast between two types of tissue having different T1) relaxation dispersions. In addition, NMR experiments showing that the principle works in practice are presented. The described procedure may become a key component for a promising new approach of MRI at ultra-low fields.
Rocznik
Strony
327--336
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
  • Department of Biomedical Engineering and Computational Science, Aalto University School of Science, P.O. Box 12200, FI-00076 AALTO, Finland
autor
  • Physikalisch-Technische Bundesanstalt, Abbestr. 2–12, 10587 Berlin, Germany
autor
  • Physikalisch-Technische Bundesanstalt, Abbestr. 2–12, 10587 Berlin, Germany
autor
  • Physikalisch-Technische Bundesanstalt, Abbestr. 2–12, 10587 Berlin, Germany
autor
  • Physikalisch-Technische Bundesanstalt, Abbestr. 2–12, 10587 Berlin, Germany
autor
  • Physikalisch-Technische Bundesanstalt, Abbestr. 2–12, 10587 Berlin, Germany
  • Department of Biomedical Engineering and Computational Science, Aalto University School of Science, P.O. Box 12200, FI-00076 AALTO, Finland
Bibliografia
  • [1] Strijkers G.J., Mulder W.J.M., van Tilborg G.A.F., Nicolay K. (2007). MRI contrast agents: current status and future perspectives. Anti-Cancer Agents Med. Chem., 7(3), 291-305.
  • [2] Klessen C., Rogalla, P., Taupitz M. (2007). Local staging of rectal cancer: the current role of MRI. Eur.Radiol., 17(2), 379-389.
  • [3] Busch S., Hatridge M., Mosle, Myers W., Wong T., Muck M., Chew K., Kuchinsky K., Simko J., Clarke J. (2012). Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT. Magn. Reson. Med., 67(4), 1138-1145.
  • [4] Espy M., Flynn M., Gomez J., Hanson C., Kraus R., Magnelind P., Maskaly K., Matlashov A., Newman S., Owens T., Peters M., Sandin H., Savukov I., Schultz L., Urbaitis A., Volegov P., Zotev V. (2010). Ultra-low field MRI for the detection of liquid explosives. Supercond. Sci. Technol., 2 (3), 034023.
  • [5] Zotev V.S., Matlashov A.N., Volegov P.L., Savukov I.M., Espy M.A., Mosher J.C., Gomez J.J., Kraus Jr., R.H. (2008). Microtesla MRI of the human brain combined with MEG. J. Magn. Reson., 194(1), 115-120.
  • [6] Vesanen P.T., Nieminen J.O., Zevenhoven K.C.J., Dabek J., Parkkonen L.T., Zhdanov A.V., Luomahaara J., Hassel J., Penttila J., Simola J., Ahonen,A.I., Makela J.P., Ilmoniemi R.J. (2013). Hybrid ultra-low-field MRI and MEG system based on a commercial whole-head neuromagnetometer, Magn. Reson. Med. 69(6), 1795-1804.
  • [7] Kraus Jr., R.H., Espy M.A., Volegov P.L., Matlachov A.N., Mosher J.C., Urbaitis A.V., Zotev V.S. (2007). Toward SQUID-based direct measurement of neural currents by nuclear magnetic resonance. IEEE Trans. Appl. Supercond., 17(2), 854-857.
  • [8] Burghoff M., Albrecht H.H., Hartwig S., Hilschenz I., Korber R., Hofner N., Scheer H.-J., Voigt J., Trahms L., Curio G. (2010). On the feasibility of neurocurrent imaging by low-field nuclear magnetic resonance. Appl. Phys. Lett., 96(23), 233701.
  • [9] Bydder G.M., Young I.R. (1985). MR imaging: Clinical use of the inversion recovery sequence. J. Comput. Assist. Tomogr., 9(4), 659-675.
  • [10] Bydder G.M., Steiner R.E., Blumgart L.H., Khenia S., Young I.R. (1985). MR imaging of the liver using short TI inversion recovery, J. Comput. Assist. Tomogr., 9(6), 1084-1089.
  • [11] Planinšič G., Stepišnik J., Kos M. (1994). Relaxation-time measurement and imaging in the Earth's magnetic field. J. Magn. Reson. A, 110(2), 170-174.
  • [12] Lee S.K., Mosle M., Myers W., Kelso N., Trabesinger A., Pines A., Clarke J. (2005). SQUID-detected MRI at 132 μT with T1-weighted contrast established at 10 μT-300 mT. Magn. Reson. Med., 53(1), 9-14.
  • [13] Alford J.K., Rutt B.K., Scholl T.J., Handler W.B., Chronik B.A. (2009). Delta relaxation enhanced MR: Improving activation-specificity of molecular probes through R1 dispersion imaging. Magn. Reson. Med., 61(4), 796-802.
  • [14] Hogain D.O., Davies G.R., Baroni S., Aime S., Lurie D.J. (2011). The use of contrast agents with fast fieldcycling magnetic resonance imaging. Phys. Med. Biol., 56(1), 105-115.
  • [15] Ungersma S.E., Matter N.I., Hardy J.W., Venook R.D., Macovski A., Conolly S.M., Scott G.C. (2006). Magnetic resonance imaging with T1 dispersion contrast. Magn. Reson. Med., 55(6), 1362-1371.
  • [16] Abragam A. (1961). The Principles of Nuclear Magnetism. Oxford: Clarendon Press. p. 53.
  • [17] Tseng C.H., Wong G.P., Pomoroy V.R., Mair R.W., Hinton D.P., Hoffmann D., Stoner R.E., Hersman F.W., Cory D.G., Walsworth R.L. (1998). Low-field MRI of laser polarized noble gas. Phys. Rev. Lett., 81(17), 3785-3788.
  • [18] Park H.W., Cho M.H., Cho Z.H. (1986). Real-value representation in inversion-recovery NMR imaging by use of a phase-correction method. Magn . Reson. Med., 3(1), 15-23.
  • [19] Xiang Q.S. (1996). Inversion recovery image reconstruction with multiseed region-growing spin reversal. J. Magn. Reson. Imaging, 6(5), 775-782.
  • [20] Koenig S.H., Brown R.D. (1987). III Relaxometry of tissue, In Grupta, R.K., editor. NMR Spectroscopy of Cells and Organisms, Vol. II, Boca Raton, FL: CRC Press. p. 75-114.
  • [21] Burghoff M., Hartwig S., Trahms L., Bernading J. (2005). Nuclear magnetic resonance in the nanoTesla range. Appl. Phys. Lett., 87(5), 054103.
  • [22] Burghoff M., Albrecht H.H., Hartwig S., Hilschenz I., Korber R., Sander Thommes T., Scheer H.J., Voigt J., Trahms L. (2009). SQUID system for MEG and low field magnetic resonance. Metrol. Meas. Syst. 16(3), 371-375.
  • [23] Bottomley P.A., Foster T.H., Argersinger R.E., Pfeifer L.M. (1984). A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med. Phys., 11(4), 425-448.
  • [24] Fischer H.W., Rinck P.A., van Haverbecke Y., Muller R.N. (1990). Nuclear relaxation of human brain gray and white matter: analysis of field dependence and implications for MRI. Magn. Reson. Med., 16(2), 317-334.
  • [25] Bottomley P.A., Hardy C.J., Argersinger R.E., Allen-Moore G. (1987). A review of 1H nuclear magnetic resonance relaxation in pathology: Are T1 and T2 diagnostic? Med. Phys., 14(1), 1-37.
Uwagi
EN
The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 200859. In addition, JN was supported by the Instrumentarium Science Foundation and JV by the Federal Ministry of Education and Research of Germany, Bernstein Focus Neurotechnology (Grant No. 01GQ0852).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29f59092-8e2f-443a-8793-adaf1c9557ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.