PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D Acoustic Field Intensity Probe Design and Measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is two-fold. First, some basic notions on acoustic field intensity and its measurement are shortly recalled. Then, the equipment and the measurement procedure used in the sound intensity in the performed research study are described. The second goal is to present details of the design of the engineered 3D intensity probe, as well as the algorithms developed and applied for that purpose. Results of the intensity probe measurements along with the calibration procedure are then contained and discussed. Comparison between the engineered and the reference commercial probe confirms that the designed construction is applicable to the sound field intensity measurements with a sufficient effectiveness.
Rocznik
Strony
701--711
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Audio Acoustic Laboratory, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Audio Acoustic Laboratory, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Aguilar J. R. (2015), Gunshot Detection Systems in Civilian Law Enforcement, J. Audio Eng. Soc., 63, 4, 280–291, http://dx.doi.org/10.17743/jaes.2015.0020.
  • 2. ANSI (American National Standards Institute) S1.9-1996 Instruments for the Measurement of Sound Intensity (1996).
  • 3. Cengarle G., Mateos T. (2011), Comparison of Anemometric Probe and Tetrahedral Microphones for Sound Intensity Measurements, 130th Audio Eng. Soc. Convention, May 13–16, 2011, Paper No. 8363, London, UK.
  • 4. Cengarle G., Mateos T., Bonsi D. (2011), A Second-Order Ambisonics Device Using Velocity Transducers, J. Audio Eng. Soc., 59, 9, 656–668.
  • 5. COAX Studio Monitor, (2016), http://apscompany. com/en/products/coax, (access 04.2016).
  • 6. De Bree H.-E. (2003), The Microflown: an acoustic particle velocity sensor, Acoust. Aust., 31, 3, 91–94.
  • 7. Fahy F. J. (1995), Sound intensity, E & F.N. Spon.
  • 8. Gauthier P.-A., Camier C., Padois T., Pasco Y., Berry A. (2015), Sound Field Repro-duction of Real Flight, Recordings in Aircraft Cabin Mock-Up, J. Audio Eng. Soc., 63, 1/2, 6–20.
  • 9. GENELEC Studio Monitor (2016), http://www.genelec.com/support-technology/previous-models/6010astudio-monitor (access 04.2016).
  • 10. IEC (International Electrotechnical Commission) 1043 Electroacoustics – Instruments for the Measurement of Sound Intensity – Measurements with Pairs of Pressure Sensing Microphones (1993).
  • 11. Jacobsen F. (2008), Handbook of Signal Processing in Acoustics, pp. 1109–1127, Intensity Techniques, Springer, New York.
  • 12. Jacobsen F. (2011), Sound Intensity and its Measurement and Applications, Acoustic Technology, Department of Electrical Engineering Technical University of Denmark.
  • 13. Kotus J. (2015), Multiple Sound Sources Localization in Free Field Using Acoustic Vector Sensor, Multimedia Tools and Applications, 74, 12, 4235–4251, DOI: 10.1007/s11042-013-1549-y.
  • 14. Kotus J., Kostek B. (2015), Measurements and Visualization of Sound Intensity Around the Human Head in Free Field Using Acoustic Vector Sensor, J. Audio Eng. Soc., 63, 1/2, 99–109, DOI: 10.17743/jaes.2015.0009.
  • 15. Kotus J., Odya P., Kostek B. (2015a), Measurements and visualization of sound field distribution around organ pipe, Proceedings of the 19th IEEE Conference SPA 2015, Signal Processing: Algorithms, Architectures, Arrangements, and Applications, pp. 145– 150, Poznań.
  • 16. Kotus J., Odya P., Szczodrak M., Kostek B. (2015b), 3D Sound Intensity Measurement Around Organ Pipes Using Acoustic Vector Sensors, [in:] Progress of Acoustics, Opieliński K. J. [Ed.], pp. 105–117, Polish Acoustical Society, Wrocław Davison, Wrocław.
  • 17. MAYA Sound Card, (2016), http://www.esiaudio.com/products/maya44usb/ (access: 04.2016).
  • 18. Merimaa J., Lokki T., Peltonen T., Karjalainen M. (2001), Measurement, Analysis, and Visualization of Directional Room Responses, 111 AES Convention, New York, USA.
  • 19. Stigler S. M. (1974). Gergonne’s 1815 paper on the design and analysis of polynomial regression experiments, Historia Mathematica, 1, 4, 431–439, DOI:10.1016/0315-0860(74)90033-0.
  • 20. Tervo S., Pätynen J., Kaplanis N., Lydolf M., Bech S., Lokki T. (2015), Spatial Analysis and Synthesis of Car Audio System and Car Cabin Acoustics with a Compact Microphone Array, J. Audio Eng. Soc., 63, 11, 914–925, DOI: http://dx.doi.org/10.17743/jaes.2015.0080.
  • 21. Weyna S. (2003), Identification of Reflection and Scattering Effects in Real Acoustic Flow Field, Archives of Acoustics, 28, 3, 191–203.
  • 22. Weyna S. (2010), An Acoustics Intensity Based Investigation of the Energy Flow Over the Barriers, Acta Physica Polonica A., No. 1, Acoustic and Biomedical Engineering, vol. 118, pp. 172–178.
  • 23. Woszczyk W., Iwaki M., Sugimoto T., Ono K., De Bree H.-E. (2007), Anechoic Measurements of Particle-Velocity Probes Compared to Pressure Gradient and Pressure Microphones, 122 Audio Eng. Soc. Convention, May 2007, Paper Number: 7107.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29f48201-945c-44ac-b745-4249acb19e69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.