Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A failure rate of the object is assumed to be a stochastic process with nonnegative, right continuous trajectories. A reliability function is defined as an expectation of a function of a random failure rate process. The properties and examples of the reliability function with the random failure rate are presented in the paper. A semi-Markov process as the random failure rate is considered in this paper.
Słowa kluczowe
Rocznik
Tom
Strony
143--149
Opis fizyczny
Bibliogr. 9 poz., wykr.
Twórcy
autor
- Naval University, Gdynia, Poland
Bibliografia
- [1] Cinlar, E. (1961). Markov renewal theory. Adv. Appl. Probab. 1, No 2, 123-187.
- [2] Grabski, F. 2002. Semi-Markov models of reliability and operation. Warszawa: IBS PAN.
- [3] Grabski, F. (2003). The reliability of the object with semi-Markov failure rate. Applied Mathematics and Computation, 135, 1-16. Elsevier.
- [4] Grabski, F. (2006). Random failure rate process. Submitted for publication in Applied Mathematics and Computation.
- [5] Kopocińska, I. & Kopociński, B. (1980). On system reliability under random load of elements. Aplicationes Mathematicae, XVI, 5-15.
- [6] Kopocińska, I. (1984). The reliability of an element with alternating failure rate. Aplicationes Mathematicae, XVIII, 187-194.
- [7] Limnios, N. & Oprisan, G. (2001). Semi-Markov Processes and Reliability. Boston, Birkhauser.
- [8] Королюк, В. С. & Турбин, А.Ф. (1976). Полумарковские процессы и их приложения. Изд-во “Наукова думка”, Киев.
- [9] Сильвестров, Д. С. (1969). Полумарковские процессы с дискретным множеством состояний. Советское радио. Москва.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29f253bb-92ba-4c61-8302-60342101d3e4