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1. Introduction 

Often, the environmental conditions are randomly 

changeable and they cause a random load of an object. 

Thus, the failure rate depending on the random load is 

a random process. The reliability function with semi-

Markov failure rate was considered in the following 

papers Kopociński & Kopocińska [5], [6], Grabski 

[3], [4]. 
 

2. Reliability function with random failure  

rate 

Let  }0:)({ ttλ  be a random failure rate of an 

object. We assume that the stochastic process has the 

nonnegative, right continuous trajectories. The 

reliability function is defined as 
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It means that the reliability function is an expectation 

of the process },0:)({ ttξ  where  
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From Jensen’s inequality we get very important result 
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The above mentioned inequality means that the 

reliability function defined by the stochastic process 

}0:)({ ttλ  is greater than or equal to the 

reliability function with the deterministic failure rate, 

equal to the expectation )].([)( tEt λ      

It is obvious, that for the stationary stochastic process 

}0:)({ ttλ , that has a constant mean value 

  )]([)( tEt λ , the reliability function defined by 

(3) is  
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Hence, we come to conclusion:  for each stationary 

random failure rate process, the according reliability 

function for each 0t , has values greater than or 

equal to the exponential reliability function with       

parameter  .   
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Abstract 

A failure rate of the object is assumed to be a stochastic process with nonnegative, right continuous trajectories. A 

reliability function is defined as an expectation of a function of a random failure rate process. The properties and 

examples of the reliability function with the random failure rate are presented in the paper. A semi-Markov 

process as the random failure rate is considered in this paper. 

     



 Grabski Franciszek 

The random failure rate 

 

 144 

 

Example 1. 

Suppose that, the failure rate of an object is a 

stochastic process }0:)({ ttλ , given by 

,0,)(  ttCtλ  where C is a nonnegative random 

variable. Trajectories of the process },0:)({ ttξ are 

 

   ,0),
2

exp()(
2

 t
t

ct       

 

where c is a value of the random variable C.  Assume 

that the random variable C has the exponential 

distribution with parameter   : 
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Then, according to (1), we compute the reliability 

function 
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           Figure 1 shows that function.   
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Figure 1. Reliability function )(tR  

 

In that case the function (3) is 
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Figure 2 shows that function.  

 

Suppose that a failure rate process }0:)({ ttλ  is a 

linear function of a random load process }0:)({ ttu : 
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Figure 2. Reliability function )(tR


 

 

Assume that the process }0:)({ ttu has an ergodic 

mean, i.e. 
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Then, [2], [3] 
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It means, that for small   
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3. Semi-Markov process as a random failure 

rate 

The semi-Markov process as a failure rate and the 

reliability function with that failure rate was 

introduced by Kopociński & Kopocińska [5]. Some 

extensions and developments of the results from [3] 

were obtained by Grabski [3], [4]. 
 

3.1. Semi-Markov processes with a discrete 

state space 

The semi-Markov processes were introduced 

independently and almost simultaneously by P. Levy, 

W.L. Smith, and L.Takacs in 1954-55.  The essential 

developments of semi-Markov processes theory were 

achieved by Cinlar [1], Koroluk & Turbin [8], 

Limnios & Oprisan [7], Silvestrov [9]. We will apply 

only semi-Markov processes with a finite or countable 

state space. The semi-Markov processes are connected 

to the Markov renewal processes.  

           Let S be a discrete (finite or countable) state space 

and let ),0[ R , ,...}2,1,0{0 N . Suppose, that 

,...2,1,0,, nnn   are the random variables defined 

on a joint probabilistic space ( , , P) with values 

on S and R  respectively. A two-dimensional random 

sequence ,...}2,1,0),,{( nnn   is called a Markov 
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renewal chain if for all 

0010 ,,...,,,,...., NnRttSiii nn   . 

The equalities 
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hold. 

It follows from the above definition that a Markov 

renewal chain is a homogeneous two-dimensional 

Markov chain such that the transition probabilities do 

not depend on the second component. It is easy to 

notice that a random sequence ,...}2,1,0:{ nn  is a 

homogeneous one-dimensional Markov chain with the 

transition probabilities 
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A matrix  
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Is called a Markov renewal kernel. The Markov 

renewal kernel and the initial distribution 

]:[ Sipp i   define the Markov renewal chain. 

That chain allows us to construct a semi-Markov 

process. 

Let 
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A stochastic process  0:)( ttX  given by the 

following relation  
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is called   a semi-Markov process on S generated by 

the  Markov renewal chain related to the kernel  

0),( ttQ  and the initial distribution p. 

Since the trajectory of the semi-Markov process keeps 

the constant values on the half-intervals ),[ 1nn   and 

it is a right-continuous function, from 

equality nnX  )( , it follows that the sequence 

 ,...2,1,0:)( nX n  is a Markov chain with the 

transition probabilities matrix 
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The sequence  ,...2,1,0:)( nX n  is called an 

embedded Markov chain in a semi-Markov process 

 0:)( ttX .  

The function  
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is a cumulative probability distribution of a  holding 

time of a state  i , if  the next state will be j . From 

(11) we have 
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is a cumulative probability distribution of an 

occupation time of the state .i   

A stochastic process  0:)( ttN  defined by      
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is called  a counting  process of the semi-Markov  

process  0:)( ttX .                       

The semi-Markov process  0:)( ttX  is said to be 

regular if for all 0t  
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It means that the process  0:)( ttX  has the finite 

number of state changes on a finite period.  

Every Markov process  0:)( ttX  with the discrete 

space S   and the right-continuous   trajectories 

keeping constant values on the half-intervals, with the 

generating matrix of the transition rates 

],:[ Sjiij   ,  iii 0  is the semi-

Markov process with the kernel  
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3.2. Semi-Markov failure rate 

Suppose that the random failure rate  }0:)({ tt   is 

the semi-Markov process with the discrete state space  

},:{ JjS j   },...,1,0{ mJ   or ,...}2,1,0{J ,   

...0 10    with the kernel  
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and the initial distribution ]:[ Jipp i  . 

We define a conditional reliability function as 
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In [3] it is proved, that for the regular semi-Markov 

process }0:)({ tt  the conditional reliability 
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the system of equations 
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Using the Laplace transform we obtain the system of 

linear equations  
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In matrix notation we have  
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The conditional mean times to failure we obtain from 

the formula 
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The unconditional mean time to failure has a form 
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3.3. 3-state random walk process as a failure 

rate 

Assume that the failure rate is a semi-Markov process 

}0:)({ ttλ  with the state space },,{ 210 S  and 

the kernel  
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where )(),(),( 210 tGtGtG  are the cumulative 

probability distribution functions with nonnegative 

support.  Suppose that at least one of the functions is 

absolutely continuous with respect to the Lebesgue 

measure. Let ],,[ 210 pppp   be an initial probability 

distribution of the process. That stochastic process is 

called the 3-state random walk process. In that case 

the matrices from the equation (19) are 
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The Laplace transform of unconditional reliability 

function is 
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Example 2. 
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Let      
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From solution of equation (19), in this case, we obtain  
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Using the MATHEMATICA computer program we 

obtain the reliability function as the inverse Laplace 

transform 
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         )01075.0cos(01343.02 22069.0 te t . 

 

Figure 3 shows this reliability function.     
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    Figure 3. The reliability function from example 2                                                

 

The corresponding density function is shown in 

Figure 4. 
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Figure 4. The density function from example 2 
 

3.4. The Poisson process as a failure rate 

Suppose that the random failure rate }0:)({ tt is the 

Poisson process with parameter 0 . Of course, the 

Poisson process is the Markov process with the 

counting state space ,...}2,1,0{S . That process can 

be treated as the semi-Markov process defined on by 

the initial distribution ,...]0,0,1[p  and the kernel  
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The Poisson process is of course a Markov process 

too.  

Applying equation (19), Grabski [3] proved the 

following theorem: 

If the random failure rate }0:)({ tt  is the Poisson 

process with parameter 0 , than the reliability 

function defined by (16) takes form  
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The corresponding density function is given by the 

formula  
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Those functions with parameter 2.0  are shown in 

Figure 5 and Figure 6. 
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Figure 5. The reliability function for the Poisson 

process                    
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Figure 6. The density function for the Poisson process 
 

3.5. The Furry-Yule process as a failure rate 

The Furry-Yule is the semi-Markov process on the 

counting state space ,...}2,1,0{S with the initial 

distribution ,...]0,0,1[p  and the kernel similar to the 

Poison process 
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The Furry-Yule process is also the Markov process. 

Assume that the random failure rate }0:)({ tt  is 

the Furry-Yule process with parameter 0 .  The 

following theorem is proved by Grab ski [4]: 
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If the random failure rate }0:)({ tt  is the Furry-

Yule process with parameter 0 , then the 

reliability function defined by  (1) is given by  
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The corresponding density function is  
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Those functions with parameter 2.0  are shown in 

Figure 7 and Figure 8. 
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Figure 7. The reliability function for the Furry-Yule  

                                         process 
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Figure 8. The density function for the Furry-Yule    

                                               process 
 

 

4. Conclusion 

Frequently, because of the randomly changeable 

environmental conditions and tasks, the assumption 

that a failure rate of an object is a random process 

seems to be proper and natural. We obtain the new 

interesting classes of reliability functions for the 

different stochastic failure rate processes.   
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