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Abstract

A failure rate of the object is assumed to be a stochastic process with nonnegative, right continuous trajectories. A
reliability function is defined as an expectation of a function of a random failure rate process. The properties and
examples of the reliability function with the random failure rate are presented in the paper. A semi-Markov

process as the random failure rate is considered in this paper.

1. Introduction

Often, the environmental conditions are randomly
changeable and they cause a random load of an object.
Thus, the failure rate depending on the random load is
a random process. The reliability function with semi-
Markov failure rate was considered in the following
papers Kopocinski & Kopocinska [5], [6], Grabski
[3]. [4].

2. Reliability function with random failure
rate

Let {A(t): t=0} be a random failure rate of an

object. We assume that the stochastic process has the
nonnegative, right continuous trajectories. The
reliability function is defined as

R(t) = E{exp(— }k(x)dxﬂ, t>0.

It means that the reliability function is an expectation
of the process {&(t):t >0}, where

(1)

E(t)= exp(— }x(x)dx], t>0. (2
0
Let
R(t) =exp(—}E[x(x)]dxj, t>0. (3)
0
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From Jensen’s inequality we get very important result

R(t) = E[exp(— }Mx)dxﬂ
0

> exp(— } E[k(x)]dxj =R(t), t>0.
0

(4)

The above mentioned inequality means that the
reliability function defined by the stochastic process
{L({t): t>0} is greater than or equal to the

reliability function with the deterministic failure rate,
equal to the expectation A (t) = E[A(t)].

It is obvious, that for the stationary stochastic process
{i(t): t>0}, that has a constant mean value
A(t) = E[A(t)] = A, the reliability function defined by
(3)is

R(t) = exp[— /1} dxj =exp(=At), t=0.
0
®)

Hence, we come to conclusion: for each stationary
random failure rate process, the according reliability
function for each t >0, has values greater than or
equal to the exponential reliability function with
parameter A .
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Example 1.
Suppose that, the failure rate of an object is a
stochastic  process  {A(t):t>0}, given by

A(t)=Ct, t=0, where C is a nonnegative random
variable. Trajectories of the process {§(t):t >0}, are

&(t) =exp(-c %)’ t>0,

where c is a value of the random variable C. Assume
that the random variable C has the exponential

distribution with parameter £ :
P(C<u)=1-e™, ux0.

Then, according to (1), we compute the reliability
function

t2

R(t) = E{exp(—}Cx dxﬂ —Te "2 My
0 0

Figure 1. Reliability function R(t)

In that case the function (3) is

R(t) = exp(— i E[Cx]dx] = exp(— %J , t>0.

Figure 2 shows that function.

Suppose that a failure rate process {A(t):t>0} is a
linear function of a random load process {u(t) :t > 0}:

ML) = £u(t).
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Figure 2. Reliability function R(t)

Assume that the process {u(t):t>0}has an ergodic
mean, i.e.

lim %}u(x)dx: E[ut)]=U.
Too ©

Then, [2], [3]
LILT(]) R(%) = exp[-at].

It means, that for small ¢
R(X) = exp[-cUx].

3. Semi-Markov process as a random failure
rate

The semi-Markov process as a failure rate and the
reliability function with that failure rate was
introduced by Kopocinski & Kopociniska [5]. Some
extensions and developments of the results from [3]
were obtained by Grabski [3], [4].

3.1. Semi-Markov processes with a discrete
state space

The semi-Markov processes were introduced
independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55. The essential
developments of semi-Markov processes theory were
achieved by Cinlar [1], Koroluk & Turbin [8],
Limnios & Oprisan [7], Silvestrov [9]. We will apply
only semi-Markov processes with a finite or countable
state space. The semi-Markov processes are connected
to the Markov renewal processes.

Let S be a discrete (finite or countable) state space
and let R, =[0,0), N, ={012,..}. Suppose, that

&, $,n=0212,... are the random variables defined

on a joint probabilistic space (£2, ®, P) with values
onSand R, respectively. A two-dimensional random

sequence {(&,,9,),n=012,..} is called a Markov
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renewal chain if for all
Igyeeeislp g, 1 €S, 15,...,t, €R.,NeN,.

The equalities
1 P{§n+l =], ‘9n+1gt|§n =i,19n :tn""1§0 :i01'90 :to}

=P{&a =0 Fa<t& =if= Q) (6)

2. P{& =iy, o=0r=P{&, =io}=pj, (7)

hold.

It follows from the above definition that a Markov
renewal chain is a homogeneous two-dimensional
Markov chain such that the transition probabilities do
not depend on the second component. It is easy to
notice that a random sequence {&,:n=012,..} is a

homogeneous one-dimensional Markov chain with the
transition probabilities

P =P =1l¢, = I}=!Lf2 Q; (1). (8)

A matrix
Q) =|Q; (): i, jes]

Is called a Markov renewal kernel. The Markov
renewal kernel and the initial distribution

p=[p,:1€S] define the Markov renewal chain.
That chain allows us to construct a semi-Markov

process.
Let

70=%=0,7,=9 +..+9,, 7, =sup{r, :ne Ny}

A stochastic process {X(t):t>0} given by the
following relation

X (t) = "fn for te [Tn ) z-n+l) (9)

is called a semi-Markov process on S generated by
the Markov renewal chain related to the kernel
Q(t),t >0 and the initial distribution p.

Since the trajectory of the semi-Markov process keeps
the constant values on the half-intervals [z,, 7,,,) and
it is a right-continuous  function, from
equality X (z,,) =¢&,, it follows that the sequence
{X(r,):n=012,..} is a Markov chain with the
transition probabilities matrix

P=[p; :i, jeS]. (10)
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The sequence {X(r,):n=012..} is called an
embedded Markov chain in a semi-Markov process
{X(t):t>0}.
The function

Fi @) =Pl —7, <t| X(z,) =1, X (r,,1) = }}

Q0
P

(11)

is a cumulative probability distribution of a holding
time of a state i, if the next state will be j. From

(11) we have

Q; (1) = py Fy (1) - (12)

The function

Gi(t)=P{ rm—rnsuX(rn)=i}=szQi,-(t) (13)

is a cumulative probability distribution of an
occupation time of the state .
A stochastic process {N(t) :t > 0} defined by

N(t)=n for t e[z, 7,,.1) (14)

is called a counting process of the semi-Markov
process {X(t):t>0}.
The semi-Markov process {X(t):t >0} is said to be
regular if forall t >0

P{N(t) <o} =1. (15)

It means that the process {X(t):t>0} has the finite
number of state changes on a finite period.
Every Markov process {X (t):t >0} with the discrete

space S  and the right-continuous  trajectories
keeping constant values on the half-intervals, with the
generating matrix of the transition rates
A=[e;i,jelS], O0<-a; = <o is the semi-

Markov process with the kernel

where

Q;(t)=p;@-e ), t>0,
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P;i =ﬁfori¢j

and
Pi = 0.

3.2. Semi-Markov failure rate
Suppose that the random failure rate {A(t):t >0} is
the semi-Markov process with the discrete state space
S ={/‘Lj 1jed} J={01...m}y or J={012..},
0< 4, <A <... with the kernel

QM) =[Q; (1) :i, jeJ]

and the initial distribution p=[p, :i € J].
We define a conditional reliability function as

Ri(t) = E{exp{—}k(u)du)M(O) = 4 ,t>0, ied. (16)
0

In [3] it is proved, that for the regular semi-Markov
process {A(t):t>0} the conditional reliability

functions R;(t),t>0, ieJ defined by (16), satisfy
the system of equations

Ri(t>=e‘l”[l—eia)]@ie‘“*R,-(t—x)dQ.j(x), (17)

ield.

Using the Laplace transform we obtain the system of
linear equations

R(S)=—— G (s+4)+ SR (9)F;(s+4), ied (18)
S+ﬂ1 j
where
R.(3) = Je R (t)dt,
0

éi (s)= TeistGi (t)dt,
0

Gij (s)= Ze_Stinj ®.

In matrix notation we have
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[1-§,(5)IR() = H(s), (19)

where
R(s)=[Ri(s):ied],
-G, (9)]=|5; — Gy (s+A4) i, je ],
~ { 1 =~ y
H(S)=| ——-Gi(s+ 4;):ied |
S+ 4

The conditional mean times to failure we obtain from
the formula

w = lim R.(p), pe(0,:), ied

p—0

(20)
The unconditional mean time to failure has a form

1= PO =4) . (21)

3.3. 3-state random walk process as a failure
rate

Assume that the failure rate is a semi-Markov process
{\(t) :t >0} with the state space S ={4,, 4,,4,} and
the kernel

0 Gy(t) 0
Q)=|aG(t) 0 (@-a)G®]|,
0 G,(t) 0

where G, (t),G,(t),G,(t) are the cumulative
probability distribution functions with nonnegative
support. Suppose that at least one of the functions is
absolutely continuous with respect to the Lebesgue
measure. Let p=[p,, p;, P,] be an initial probability
distribution of the process. That stochastic process is
called the 3-state random walk process. In that case
the matrices from the equation (19) are

[1-G.(s)]=
1 —Go(s+4) 0
=|-ag,(s+4,) 1 —-(1-a)g,(s+4,) ,(22)
0 -g,(s+4,) 1
where
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2

§,(5) = [e*'dG, (t),i=0.2. §,(s)=—L—.
0 (s+7)°
R, (s) Let
R(s)=| Ri(s) |
- =[1,0,0], a=04
R:(6) P10
and
ﬁ—éo(swo) a=04, f=004,y=002, 4,=0, ,=01, 2,=02 .
H(s)=| -L-—G,(s+ : 23
) Sjﬂl ~l( ) (23) Since the matrices (22) and (23) are
55 ~C2(5+42)
[1-,(6)]=
The Laplace transform of unconditional reliability
function is 1 00025 0
(0.05+s)2
R(S) = PoRs (8) + PyRy(8) + 1Ry (5) =|"04pas 1 -06g)
0 ___0.0004 1
(0.22+5)2
Example 2.
Assume that
1_ 00025
N S 5(0.05+s)2
po :1’ pl - O’ p2 =0 H(S) = ﬁ - (s+0.lo)'(%£.114+s) '
1 0.0004
and SH2 (540.2)(0.22+5)2
Go(t)=1— 1+ at)e™, From solution of equation (19), in this case, we obtain
i} ~ ~ a(s
G, (t)=1-e"", R(S)ZRO(S):~_)
b(s)
G,(t)=1-(1+yt)e”", t>0.
() =1- L+ t)e where

The corresponding Laplace transfo are ~
corresponding L-aplace transtorms ar a(s) = (0.01623+ 0.2334% + 52)

2

ing (24
Go(s)= s(s+a)?’ -(0.05002+ 0.44655% + s°)
G (<) = y/j 5(3) =(0.03083+5)(0.07486+ 5)(0.13292+ 5)
1(s)= ,
s(s+ p)
, -(0.04882+0.44138% + 5?)
~ /4
G,(8)=—"——, .
() s(s+7)? Using the MATHEMATICA computer program we
ol obtain the reliability function as the inverse Laplace
go(8)=—, transform
° (s+a)?
P R(t) =0.51646 213292 1 0.2334% 00748
g:(s)=—"—,
! S+ 4 + 228565 013292

—2-0.0153% 7229 ¢55(0.0107%)
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—2.0.01343 792205 ¢55(0.01075).

Figure 3 shows this reliability function.

Figure 3. The reliability function from example 2

The corresponding density function is shown in
Figure 4.
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Figure 4. The density function from example 2
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3.4. The Poisson process as a failure rate

Suppose that the random failure rate {A(t) : t > 0} is the

Poisson process with parameter A > 0. Of course, the
Poisson process is the Markov process with the
counting state space S ={0,1,2,...}. That process can

be treated as the semi-Markov process defined on by
the initial distribution p =[10,0,...] and the kernel

[0 G,(t) O 0
0 0 G O
Qt)={0 0 0 G, 0}

where
G (t)=1-e",t>0, i=012,...

The Poisson process is of course a Markov process
too.

Applying equation (19), Grabski [3] proved the
following theorem:

If the random failure rate {A(t):t >0} is the Poisson

process with parameter A >0, than the reliability
function defined by (16) takes form
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R(t) =exp{-A[t —1+exp(-t)]}, t>0.

The corresponding density function is given by the
formula

f(t) = AexpfAt—1+exp(t)] H1-exp(t)],t > 0.

Those functions with parameter 4 = 0.2 are shown in
Figure 5 and Figure 6.

Figure 5. The reliability function for the Poisson
process

0.14
0.12

0.1
0.08
0.06
0.04
0.02

Figure 6. The density function for the Poisson process

3.5. The Furry-Yule process as a failure rate
The Furry-Yule is the semi-Markov process on the
counting state space S =4{0,.,2,..}with the initial
distribution p =[1,0,0,...] and the kernel similar to the
Poison process

[0 Gy(t) O 0
0 0 Gt 0
Qt)=/0 0 0 G,t) 0

where
G,(t)=1-e ™" t>0, i=012,...

The Furry-Yule process is also the Markov process.
Assume that the random failure rate {A(t):t>0Q} is
the Furry-Yule process with parameter 2 >0. The
following theorem is proved by Grab ski [4]:
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If the random failure rate {A(t):t>0} is the Furry-

Yule process with parameter A >0, then the
reliability function defined by (1) is given by

_ (A+1)exp(=4t)
1+ AexplE(A+Dt]

R(t)

The corresponding density function is

_ A(A+Dexpl— (4 +Dt] >0

T {+Aexp-A+DY¥

Those functions with parameter 4 = 0.2 are shown in
Figure 7 and Figure 8.

1

Figure 7. The reliability function for the Furry-Yule
process
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Figure 8. The density function for the Furry-Yule
process
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4. Conclusion

Frequently, because of the randomly changeable
environmental conditions and tasks, the assumption
that a failure rate of an object is a random process
seems to be proper and natural. We obtain the new
interesting classes of reliability functions for the
different stochastic failure rate processes.
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