Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The construction industry is an economic sector that is characterized by seasonality. Seasonal factors affect the volume of production, which in turn affects the accident rate. The aim of the research presented in the article was to develop a model for predicting the number of people injured in occupational accidents in the construction industry. Based on the analysis of statistical data and previous studies, the occurrence of certain regularities of the accidentality phenomenon was found, namely the long-term trend over many years, as well as seasonality and cyclicality over the course of a year. The found regularities were the basis for the assumptions that were made for the construction of the model. A mathematical model was built in the non-linear regression dimension. The model was validated by comparing the results of prediction errors generated by the developed model with the results of prediction errors generated by other known models, such as ARIMA, SARIMA, linear and polynomial models, which take into account the seasonality of the phenomenon. The constructed model enables the number of people injured in accidents in the construction industry in selected months of future years to be predicted with high accuracy. The obtained results can be the basis for making appropriate decisions regarding preventive and prophylactic measures in the construction industry. Commonly known mathematical tools available in the STATISTICA package were used to solve the given task.
Czasopismo
Rocznik
Tom
Strony
art. no. e30, 2022
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
autor
- Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
autor
- Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Politechniki 6, 90-924 Lodz, Poland
autor
- Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Politechniki 6, 90-924 Lodz, Poland
autor
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
Bibliografia
- 1. Ling FYY, Liu M, Woo YC. Construction fatalities in Singapore. Int J Project Manage. 2009;27(7):717–26. https:// doi. org/ 10.1016/j.ijproman.2008.11.002.
- 2. Dumrak J, Mostafa S, Kamardeen I, Rameezdeen R. Factors associated with the severity of construction accidents: the case of South Australia. Aust J Constr Econ Build. 2013;13(4):32–49. https://doi.org/10.5130/ajceb.v13i4.3620.
- 3. López Arquillos A, Rubio Romero JC, Gibb A. Analysis of construction accidents in Spain, 2003–2008. J Saf Res. 2012;43(5–6):381–8. https://doi.org/10.1016/j.jsr.2012.07.005.
- 4. Elvik R. Can injury prevention efforts go too far? Reflections on some possible implications of Vision Zero for road accident fatalities. Accid Anal Prev. 1999;31:265–86. https://doi.org/10.1016/S0001-4575(98)00079-7.
- 5. Szer I, Błazik-Borowa E, Szer J. The influence of environmental factors on employee comfort based on an example of location temperature. Arch Civ Eng. 2017;LXII:3. https://doi.org/10.1515/ace-2017-0035.
- 6. Hola B, Nowobilski T, Szer I, Jacek Szer J. Identification of factors affecting the accident rate in the construction industry. Procedia Eng. 2017;208:35–42.
- 7. Lipecki T, Jaminska-Gadomska P, Bec J, Blazik-Borowa E. Facade scaffolding behaviour under wind action. Arch Civ Mech Eng. 2020;20:1.
- 8. Jablonski M, Szer I, Szer J. Probability of occurrence of health and safety risks on scaffolding caused by noise exposure. J Civ Eng Manag. 2018;24(6):437–43.
- 9. European Statistical Recovery Dashboard https://ec.europa.eu/eurostat/data/database.
- 10. Occupational Safety and Health Administration. 2020. https://www.osha.gov/. Accessed 4 Nov 2020.
- 11. Szer I, Szer J, Kaszubska M, Miszczak J, Hoła B, Błazik-Borowa E, Jabłoński M. Influence of the seasons on construction site accidents. Arch Civ Eng. 2021;67:3.
- 12. Liao CW. Pattern analysis of seasonal variation in occupational accidents in the construction industry. Procedia Eng. 2012;29:3240–4. https://doi.org/10.1016/j.proeng.2012.01.473.
- 13. Pierce B. The seasonal timing of work-related injuries, pp 2371–2381. 2013. http://www.bls.gov/tus/.
- 14. Kang K, Ryu H. Predicting types of occupational accidents at construction sites in Korea using random forest model. Saf Sci. 2019;120:226–36. https://doi.org/10.1016/j.ssci.2019.06.034.
- 15. Traczyk WZ, Trzebski A. Human physiology with elements of applied and clinical physiology (in polish). PZWL, Warszawa. 2001.
- 16. Meng WL, Shen S, Zhou A. Investigation on fatal accidents in Chinese construction industry between 2004 and 2016. Nat Hazards. 2018;94(2):655–70. https://doi.org/10.1007/s11069-018-3411-z.
- 17. Granger WJ. Seasonality: causation, interpretation, and implications. 1979. http://www.nber.org/chapters/c3896. Accessed 11 May 2021.
- 18. Mach L, Zmarzly D, Dabrowski I, Fracz P. Comparison on sub-annual seasonality of building construction in European countries. Eur Res Stud J. 2020;2:4. https://doi.org/10.35808/ersj/1682.
- 19. Kim DK, Park S. Business cycle and occupational accidents in Korea. Saf Health Work. 2020;11:314–21. https:// doi. org/ 10.1016/j.shaw.2020.05.002.
- 20. Ruiz-Fernandez JP, Marco JB, Lopez MA, Gascuena NV. Influence of seasonal factors in the earned value of construction. Appl Math Nonlinear Sci. 2019;4(1):21–34. https://doi.org/10.2478/AMNS.2019.1.00003.
- 21. Fabiano B, Parentini I, Ferraiolo A, Pastorino R. A century of accidents in the Italian industry: relationship with the production cycle. Saf Sci. 1995;21:65–74. https://doi.org/10.1016/0925-7535(95)00043-7.
- 22. Dong XS, Fujimoto A, Ringen K, Men Y. Fatal falls among Hispanic construction workers. Accid Anal Prev. 2009;41:1047–52. https://doi.org/10.1016/j.aap.2009.06.01.
- 23. Hoła B, Szóstak M. Analysis of the state of the accident rate in the construction industry in European Union Countries. Arch Civ Eng. 2015. https://doi.org/10.1515/ace-2015-0033.
- 24. Hola B, Szostak M. Methodology of analysing the accident rate in the construction industry. In: Conference: 12th international conference on modern building materials, structures and techniques (MBMST), Vilnius, Lithuania, 26–27, 2016 Procedia engineering, vol 172; 2017. pp. 355–362.
- 25. Lee JY, Yoon YG, Oh TK, Park SS. A study on data pre-processing and accident prediction modelling for occupational accident analysis in the construction industry. Appl Sci. 2020;10(21):7949. https://doi.org/10.3390/app10217949.
- 26. Zhang J, Zhang W, Peixui X, Chen N. Applicability of accident analysis methods to Chinese construction accidents. J Saf Res. 2018;68:4. https://doi.org/10.1016/j.jsr.2018.11.006.
- 27. Wingea S, Albrechtsena E, Mostueba BA. Causal factors and connections in construction accidents. Saf Sci. 2019;112:130–41.
- 28. Hoła B. Methodology of estimation of accident situation in building industry. Arch Civ Mech Eng. 2012;9:29–46.
- 29. Andolfo C, Sadeghpour F. A Probabilistic accident prediction model for construction sites. Proc Procedia Eng. 2015;123:15–23.
- 30. Nguyen LD, Tran DQ, Chandrawinata MP. Predicting safety risk of working at heights using Bayesian networks. J Constr Eng Manag. 2016;142:04016041.
- 31. Le Q-T, Park C-S Construction safety education model based on second life. In: Proceedings of the proceedings of IEEE international conference on teaching, assessment, and learning for engineering (TALE) 2012; Hong Kong; 2012. pp. H2C–1–H2C–5.
- 32. Klempous R, Kluwak K, Idzikowski R, Nowobilski T, Zamojski T. Possibility analysis of danger factors visualization in the construction environment based on Virtual Reality model. In: Proceedings of the 8th IEEE international conference on cognitive infocommunications, CogInfoCom 2017—proceedings; vol. 2018; 2018. pp. 000363–000368.
- 33. Isaac S, Edrei T. A statistical model for dynamic safety risk control on construction sites. Autom Constr. 2016;63:66–78.
- 34. Sarkar S, Raj R, Vinay S, Maiti J, Pratihar DK. An optimization-based decision tree approach for predicting slip-trip-fall accidents at work. Saf Sci. 2019;118:57–69.
- 35. Topolski M. Algorithm of multidimensional analysis of main features of PCA with blurry observation of facility features detection of carcinoma cells multiple myelom. Progress Comput Recogn Syst. 2020;2020:286–94.
- 36. Topolski M. Application of the stochastic gradient method in the construction of the main components of PCA in the task diagnosis of multiple sclerosis in children computational scienceṣ—ICCS 2020; 35–44. In: Yurekli K, Ability of stochastic modelling to forecast crop reference evapotranspiration. Irrigation and Drainage. 2021. https://doi.org/10.1002/ird.2598.
- 37. Eddine BI, Guastaldi E, Zirulia A, Bengusmia M, Brancale D. Trend analysis and spatiotemporal prediction of precipitation, temperature, and evapotranspiration values using the ARIMA models: case of the Algerian Highlands 2021. Arab J Geosci. 2021;13:24. https://doi.org/10.1007/s12517-020-06330-6.
- 38. Brockwell P, Davis R. Introduction to time series and forecasting. Berlin: Springer; 2002.
- 39. Freedman DA. Statistical models: theory and practice. Cambridge: Cambridge University Press; 2009.
- 40. Główny Urząd Statystyczny, Wypadki przy pracy. 2020. https://stat. gov. pl/ publi kacje/ publi kacje-a- z/ szukaj. html? letter= W&page=5.
- 41. Kendall MG. Rank correlation methods. London: Charles Griffin & Company Limited; 1948.
- 42. Koronacki J, Mielniczuk J. Statystyka dla studentów kierunków technicznych i przyrodniczych. Warszawa: WNT. 2006. ISBN 83-204-3242-1.
- 43. Stanisz A. Przystępny kurs statystyki z zastosowaniem statistica PL na przykładach z medycyny. Tom1. Statystyki podstawowe, StatSoft Polska Sp. z o.o., Kraków. 2006.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29efa452-c3d7-4189-97f6-3ea50aea6843