PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Possibility of Using Neural Networks to Monitor the Technical Efficiency of Diesel Engines During Operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to analyse the possibility of using neural networks to determine the parameters of the chemical composition of exhaust gases as a function of engine performance parameters obtained from the on-board diagnostics system such as crankshaft speed and engine load index. The subject of the study was a Fiat Panda car equipped with a 1.3 Multijet diesel engine and powered by pure diesel. The tests used the MAHA MET 6.3 exhaust gas analyser and the on-board diagnostics system OBD II. The obtained values of NOx,O2,CO2 and PM measured behind the DPF were analysed. For the purpose of building a neural network model, preliminary studies were carried out in non-urban traffic (high-speed route). Based on the data obtained, processes of learning neural network structures with approximate properties with backward propagation of errors were carried out. Subsequently, tests were carried out on the operational parameters of the vehicle and the chemical composition of exhaust gases in urban traffic. Analysis of the obtained values of the average parameters obtained during the measurement and obtained on the basis of the prepared neural models allows to determine the relative differences at the level of not more than 10 percent.
Słowa kluczowe
EN
DPF   engine   vehicle   biofuel   fuel  
Twórcy
autor
  • Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 164, 02-787 Warsaw, Poland
autor
  • Department of Production Management, Faculty of Engineering Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland
  • Department of Production Computerisation and Robotisation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Advisors Panel Production Engineering, Alternative Energy Sources Bialystok, 15-351 Bialystok, Poland
  • Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 164, 02-787 Warsaw, Poland
  • Department of Production Computerisation and Robotisation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Nieuwenhuijsen MJ. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environment International 2020;140:105661. https://doi. org/10.1016/j.envint.2020.105661
  • 2. Puricelli S, Cardellini G, Casadei S, Faedo D, Van den Oever AEM, Grosso M. A review on biofuels for light-duty vehicles in Europe. Renewable and Sustainable Energy Reviews 2020;137:110398. https:// doi.org/10.1016/j.rser.2020.110398
  • 3. Phyo MZM, Wai P, Thin MH, Oh BS, Phairote W, Srilomsak M, Charoenphonphanich C, Masomtob M, Srimanosaowapak S, Kosaka H, Karin P. Experimental investigation of metallic partial-flow particulate filter on a diesel engine’s combustion pressure and particle emission. Case Studies in Thermal Engineering 2023; 49:103188. https://doi. org/10.1016/j.csite.2023.103188
  • 4. Meng Z, Wang W, Zeng B, Bao Z, Hu Y, Ou J, Liu J. An experimental investigation of particulate emission characteristics of catalytic diesel particulate filters during passive regeneration. Chemical Engineering Journal 2023; 468:143549. https://doi. org/10.1016/j.cej.2023.143549
  • 5. Zerboni A, Rossi T, Bengalli R, Catelani T, Rizzi C, Priola M, Casadei S, Mantecca P. Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. Environmental Pollution 2022; 297:118767. https://doi.org/10.1016/j. envpol.2021.118767
  • 6. Huang Y, Ng ECY, Surawski NC, Zhou JL, Wang X, Gao J, Lin W, Brown RJ. Effect of diesel particulate filter regeneration on fuel consumption and emissions performance under real-driving conditions. Fuel 2022; 320:123937. https://doi.org/10.1016/j. fuel.2022.123937
  • 7. Zhu X, Liu S, Wang Z, Li R, Zhao Z. Study of the influence of methanol/F-T diesel combustion particle materiality parameters on the deposition process in diesel particulate filter trap units. Journal of the Energy Institute 2023; 107:101184. https://doi. org/10.1016/j.joei.2023.101184
  • 8. Kumar MV, Babu AV, Reddy CR, Pandian A, Bajaj M, Zawbaa HM, Kamel S. Investigation of the combustion of exhaust gas recirculation in diesel engines with a particulate filter and selective catalytic reactor technologies for environmental gas reduction. Case Studies in Thermal Engineering 2022;40:102557. https://doi.org/10.1016/j.csite.2022.102557
  • 9. Liu D, Li X, Xie L, Chang J, Kang Y, Zhang Z. Experimental studies on the particulate matter emission characteristics of a lateral swirl combustion system for direct injection diesel engines. Envronmental Pollution 2023;330:121756. https://doi. org/10.1016/j.envpol.2023.121756
  • 10. Lou D, Chen Y, Zhang Y, Jue K, Tan P, Hu Z, Fang L. Analysis of temperature and pressure characteristics in catalyzed diesel particulate filter operation for heavy-duty diesel engine. Fuel 2022;328:125248. https://doi.org/10.1016/j.fuel.2022.125248
  • 11. Ashraful AM, Masjuki HH, Kalam MA, Rashedul HK, Sajjad H, Abedin MJ. Influence of anti-corrosion additive on the performance, emission and engine component wear characteristics of an IDI diesel engine fueled with palm biodiesel. Energy Conversion and Management 2014;87:48-57. https://doi. org/10.1016/j.enconman.2014.06.093
  • 12. Wójcik M. Recycling technologies of used Diesel Particulate Filter (DPF) from buses. Autobusy 2017;10:29-33.
  • 13. Durczak T, Sander P, Górski K. Analysis of exhaust after-treatment systems and methods of their regeneration. Autobusy 2017;12:829-832.
  • 14. Fuć P, Siedlecki S, Szymlet N, Sokolnicka B, Rymaniak Ł, Dobrzyński M. Exhaust emissions from a Euro 6c compliant pc vehicle in real operating conditions. Journal of KONBiN 2019;49:421-431. 10.2478/jok-2019-0094
  • 15. Bielaczyc P, Szczotka A, Woodburn J. An overview of particulate matter emissions from modern light duty vehicles. Combustion Engines. 2013;153(2):101-108. doi:10.19206/CE-117007
  • 16. Kurien C, Srivastava AK, Naudin J. Modelling of regeneration and filtration mechanism in diesel particulate filter for development of composite regeneration emission control system. Archive of Mechanical Engineering 2018; LXV: 277-290. DOI 10.24425/123025
  • 17. Zuo Q, Gong J, Zhang DM, Chen T, Jia G. Performance evaluation on field synergy and composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter. Journal of Central South University 2014;21(12):4599–4606. DOI: 10.1007/s11771-014-2466-6
  • 18. Ambrozik A, Ambrozik T, Kurczyński D. Load characteristics of turbocharged 1.3 Multijet engine. Advances in Science and Technology 2012; 15: 7–20.
  • 19. Ambrozik A, Kurczyński D, Łagowski P, Warianek M. The toxicity of combustion gas from the Fiat 1.3 Multijet engine operating following the load characteristics and fed with rape oil esters. Proceedings of The Institute of Vehicles 2016; 1: 23–36
  • 20. OBD2. Available online: https://www.csselectronics.com/pages/obd2-pid-table-on-board-diagnos tics-j1979 (accessed on 19 June 2023)
  • 21. MAHA. Emission measurement technology. Available online: https://www.maha.de/restric-tion/check-asset/support_documents/dokumente/ Brosch%C3%BCren/MAHA/05_Abgasmesstechnik/MET/TD_MAHA_MET_6.3_VP135213_ en.pdf (accessed on 19 June 2023)
  • 22. Gao J, Chen H, Li Y, Chen J, Zhang Y, Dave K, Huang Y. Fuel consumption and exhaust emissions of diesel vehicles in worldwide harmonized light vehicles test cycles and their sensitivities to ecodriving factors. Energy Conversion and Management 2019; 196: 605-613. https://doi.org/10.1016/j. enconman.2019.06.038
  • 23. Krause J, Thiel C, Tsokolis D, Samaras Z, Rota C, Ward A, Prenninger P, Coosemans T, Neugebauer S, Verhoeve, W. EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios. Energy Policy 2020; 138: 111224. https:// doi.org/10.1016/j.enpol.2019.111224
  • 24. Tucki K, Bączyk A, Klimkiewicz M, Mączyńska J, Sikora M. Crude rapeseed oil as a fuel for vehicle propulsion. IOP Conference Series. Earth and Environmental Science 2019; 214: 1-10. doi:10.1088/1755-1315/214/1/012103
  • 25. Kim K., Lee J., Kim J. Can liquefied petroleum gas vehicles join the fleet of alternative fuel vehicles? market forecast and environmental impact. Energy Policy 2021; 154: 112311. https://doi.org/10.1016/j. enpol.2021.112311
  • 26. Foteinis S, Chatzisymeon E, Litinas A, Tsoutsos T. Used-cooking-oil biodiesel: Life cycle assessment and comparison with first- and third-generation biofuel. Renewable Energy 2020; 153:588-600. https:// doi.org/10.1016/j.renene.2020.02.022.
  • 27. Yahya NY, Ngadi N, Wong S, Hassan O. Transesterification of used cooking oil (UCO) catalyzed by mesoporous calcium titanate: Kinetic and thermo-dynamic studies. Energy Conversion and Management 2018;164:210-218. https://doi.org/10.1016/j. enconman.2018.03.011.
  • 28. MuelasA, Remacha P, Ballester J. Droplet combustion and sooting characteristics of UCO biodiesel, heating oil and their mixtures under realistic conditions. Combustion and Flame 2019;203:190-203. https:// doi.org/10.1016/j.combustflame.2019.02.014
  • 29. Orjuela A, Clark J. Green chemicals from used cooking oils: Trends, challenges, and opportunities. Current Opinion in Green and Sustainable Chemistry 2020;26:100369. https://doi.org/10.1016/j. cogsc.2020.100369
  • 30. Moazeni F, Chen MC, Zhang G. Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production 2019;216:117-128. https://doi.org/10.1016/j. jclepro.2019.01.181
  • 31. Matbouei M, Weston DP, Liang X, Hainsworth SV. An investigation of the effect of temperature on theoxidation processes of metallic diesel engine fuel system materials and B100 biodiesel from used cooking oil in exposure testing. Fuel 2021;285:119063. https://doi.org/10.1016/j.fuel.2020.119063
  • 32. Ghosh N, Halder G. Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel production from edible and inedible feedstock: A review. Energy Conversion and Management 2022;270:116292. https://doi. org/10.1016/j.enconman.2022.116292
  • 33. Roslan NA, Abdullah N, Abidin SZ. The synthesis of sulphonated hypercrosslinked exchange resin for free fatty acid esterification. Comptes Rendus Chimie 2019;22:761-770. https://doi.org/10.1016/j. crci.2019.08.004
  • 34. Bemani A, Xiong Q, Baghban A, Habibzadeh S, Mohammadi AH, Doranehgard MH. Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO- LSSVM models. Renewable Energy 2020;150:924-934. https://doi.org/10.1016/j. renene.2019.12.086
  • 35. Gwardiak H, Rozycki K, Ruszkarska M, Tylus J, Walisiewicz-Niedbalska W. Evaluation of fatty acid methyl esters (FAME) obtained from variousImplications of transportation policy based on feedstock. Rośliny Oleiste Oilseed Crop 2011;32: 137–147.
  • 36. Neto JAR, Alves SN, Lima L.Fatty acid methyl esters (FAMEs) obtained from edible vegetable oils: Larvicidal activity and melanization proces in Aedes aegypti larvae. Biocatalysis and Agricultural Biotechnology 2023;50:102689. https://doi. org/10.1016/j.bcab.2023.102689
  • 37. Niculescu R, Năstase M, Clenci A. On the determination of the distillation curve of fatty acid methyl esters by gas chromatography. Fuel 2022;314:123143. https://doi.org/10.1016/j.fuel.2022.123143
  • 38. Liu W, Lu G, Yang G, Bi Y. Improving oxidative stability of biodiesel by cis-trans isomerization of carbon-carbon double bonds in unsaturated fatty acid methyl esters. Fuel 2019;242:133-139. https:// doi.org/10.1016/j.fuel.2018.12.132
  • 39. Ameen NHA, Durak E. Study of the tribological properties the mixture of soybean oil and used (waste) frying oil fatty acid methyl ester under boundary lubrication conditions. Renewable Energy 2020;145:1730-1747. https://doi.org/10.1016/j. renene.2019.06.117
  • 40. Bharathiraja B, Jayamuthunagai J, Sudharsanaa T, Bharghavi A, Praveenkumar R, Chakravarthy M, Yuvaraj D. Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques. Renewable and Sustainable Energy Reviews 2017;68:788-807. https://doi. org/10.1016/j.rser.2016.10.017
  • 41. Tsai TY, Lo YC, Dong CD, Nagarajan D, Chang JS, Lee DJ. Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum. Applied Energy 2020;277:115531. https:// doi.org/10.1016/j.apenergy.2020.115531
  • 42. Nandhini R, Rameshwar SS, Sivaprakash B, Rajamohan N, Monisha RS. Carbon neutrality in biobutanol production through microbial fermentation technique from lignocellulosic materials – A biorefinery approach. Journal of Cleaner Production 2023;413:137470. https://doi.org/10.1016/j. jclepro.2023.137470
  • 43. Xue C, Zhao J, Chen L, Yang ST, Bai F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnology Advances 2017;35:310-322. https://doi.org/10.1016/j. biotechadv.2017.01.007
  • 44. Huzir NM, Aziz MMA, Ismail SB, Abdullah B, Mahmood NAN, Umor NA, Muhammad SAFS. Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renewable and Sustainable Energy Reviews 2018;94:476- 485. https://doi.org/10.1016/j.rser.2018.06.036
  • 45. Cabezas R, Duran S, Zurob E, Plaza A, Merlet G, Araya-Lopez C, Romero J, Quijada-Maldonado E Development of silicone-coated hydrophobic deep eutectic solvent-based membranes for pervaporation of biobutanol. Journal of Membrane Science 2021;637:119617. https://doi.org/10.1016/j. memsci.2021.119617
  • 46. Barbosa TP, Eckert JJ, Roso VR, Pujatti FJP, Silva LAR, Gutiérrez JCH. Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle. Energy 2021;235:121361. https://doi.org/10.1016/j. energy.2021.121361
  • 47. Zhang M, Ge Y, Wang X, Xu H, Tan J, Hao L. Effects of ethanol and aromatic compositions on regulated and unregulated emissions of E10-fuelled China-6 compliant gasoline direct injection vehicles. Renewable Energy 2021;176:322-333. https://doi. org/10.1016/j.renene.2021.03.029 48. Makkawi Y, Khan M, Pour FH, Moussa O, Mohamed B, Alnoman H, Elsayed Y. A comparative analysis of second-generation biofuels and its potentials for large-scale production in arid and semiarid regions. Fuel 2023;343:127893. https://doi. org/10.1016/j.fuel.2023.127893
  • 49. Abbasi M, Pishvaee MS, Mohseni S. Third-generation biofuel supply chain: A comprehensive review and future research directions. Journal of Cleaner Production 2021;323:129100. https://doi. org/10.1016/j.jclepro.2021.129100
  • 50. Yang Y, Tian Z, Lan Y, Wang S, Chen H. An overview of biofuel power generation on policies and finance environment, applied biofuels, device and performance. Journal of Traffic and Transportation Engineering (English Edition) 2021;8:534-553. https://doi.org/10.1016/j.jtte.2021.07.002
  • 51. Kosowski K, Tucki K, Kosowski A. Turbine stage design aided by artificial intelligence methods. Expert Systems with Applications 2009;36: 11536- 11542. https://doi.org/10.1016/j.eswa.2009.03.053
  • 52. Kosowski K, Tucki K, Kosowski A. Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades. Journal of Turbomachinery-Transactions of the ASME 2010;132:014501-014505.
  • 53. Tucki K, Orynycz O, Wasiak A, Świć A, Mieszkalski L, Mruk R, Gola A, Słoma J, Botwińska K, Gawron J. A Computer Tool Using OpenModelica for Modelling CO2 Emissions in Driving Tests. Energies 2022;15:995.doi.org/10.3390/en15030995
  • 54. Tucki K, Orynycz O, Wasiak A, Świć A, Mruk R. Botwińska K. Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production. Energies 2020;3(3):1-29. doi. org/10.3390/en13030561
  • 55. Tucki K. A Computer Tool for Modelling CO2 Emissions in Driving Tests for Vehicles with Diesel Engines. Energies 2021;14:266. doi.org/10.3390/ en14020266
  • 56. Tucki K. A Computer Tool for Modelling CO2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels. Energies 2021;14:1400. doi.org/10.3390/en14051400
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29ef79dd-4ad2-40f1-ba66-00e0ede55e84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.