PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture behavior of 7075-T6 aluminum alloy under electromagnetic forming and traditional stamping

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
7075-T6 aluminum alloy is a high strength aluminum alloy that is widely used in automotive and aerospace manufacturing. Nevertheless, its plastic deformation ability is poor at room temperature. Electromagnetic forming (EMF) is a method dedicated to forming materials at high speed using magnetic force, which can significantly improve their plastic deformation ability. However, it is difficult to understand the dynamic processes of high-speed forming. Herein, finite element models of EMF and quasi-static stamping were developed using the ANSYS and ABAQUS software. The Johnson–Cook constitutive model was used to describe the stress–strain behavior of the material, while the Johnson–Cook damage model was used to describe the fracture behavior of the material and the distribution of the fracture strain. The sheet exhibited a small temperature rise before fracture, which has little effect on the material fracture strain by EMF. After fracture, the temperature increased sharply. Scanning electron microscopy images revealed that the material underwent a melting phenomenon at the fracture location. Numerical simulation results demonstrated that the fracture energy of EMF was three times that of traditional stamping, and the high strain rate is the main factor affecting the fracture strain of the material.
Rocznik
Strony
821--835
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
autor
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
autor
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
  • Light Alloy Research Institute, Central South University, Changsha 410083, China
  • State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People’s Republic of China
autor
  • Light Alloy Research Institute, Central South University, Changsha 410083, China
autor
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
  • Light Alloy Research Institute, Central South University, Changsha 410083, China
  • State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People’s Republic of China
autor
  • COMAC Shanghai Aircraft Manufacturing Co., Ltd, Shanghai 201324, People’s Republic of China
Bibliografia
  • [1] Ji H. Development and application of 7000 high strength aluminum alloys on airplane. Aeronaut Sci Technol. 2015;6:75–8.
  • [2] Shao ZT, Jiang J, Lin JG. Feasibility study on direct flame impingement heating applied for the solution heat treatment, forming and cold die quenching technique. J Manuf Process. 2018;36:398–404.
  • [3] Song YL, Dai DG, Geng P. Formability of aluminum alloy thin-walled cylinder parts by servo hot stamping. Procedia Eng. 2017;207:741–6.
  • [4] Liu Y, Zhu ZJ, Wang ZJ. Formability and lubrication of a B-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets. Procedia Eng. 2017;207:723–8.
  • [5] Wang L, Strangwood M, Balint D, Lin JG, Dean TA. Formability and failure mechanisms of AA2024 under hot forming conditions. Mater Sci Eng A. 2010;528:2648–56.
  • [6] Bühler H, Bauer D. Ein Beitrag zur Formänderungsfestigkeit von metallischen Werkstoffen bei der Hochgeschwindigkeit-sumformung durchmagnetische Felder. Bänder Bleche Rohre. 1968;9:230–4.
  • [7] Balanethiram VS, Daehn GS. Hyperplasticity: Increased forming limits a high workpiece velocity. Scr Metall Mater.1994;30:515–20.
  • [8] Imbert JM, Winkler SL, Worswick MJ. The effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet. J Eng Mater Technol. 2005;127:145–53.
  • [9] Cheng TC, Lee RS. The influence of grain size and strain rate effects on formability of aluminium alloy sheet at high-speed forming. J Mater Process Technol. 2018;253:134–59.
  • [10] Imbert J, Worswick M, Winkler S, Golovashchenko S, Dmitriev V. Analysis of the increased formability of aluminum alloy sheet formed using electromagnetic forming. SAE World Congress. 2005.
  • [11] Xu JJ, Huang L, Li JJ. Design and simulation of electromagnetic blanking processes based on filed shaper. China Mechan Eng. 2020;31:1368–77.
  • [12] Mao YF. Research on constitutive model and ductile fracture criterion of AA5052 at high work piece speed. Hunan University. 2019.
  • [13] Zou XF, Huang SY, Liu W. Numerical simulation of collision effect on damage evolution in electromagnetic forming of aluminum alloy sheet. Key Eng Mater. 2018;765:216–21.
  • [14] Zeng X, Meng Z, Liu W. Deformation behaviour and damage evolution of aluminium alloy sheet in electromagnetic forming with uniform pressure actuator. Int J Adv Manuf Technol. 2020;109:745–54.
  • [15] Xie CJ, Tong MB, Liu F. Dynamic tests and constitutive model for 7075–T6 aluminum alloy. J Vib Shock (in chinese). 2014;33:110–4.
  • [16] Jørgensen KC, Swan V. Modeling of Armour-piercing Projectile Perforation of Thick Aluminium Plates. 13th International LS-DYNA users Conference. Dearborn. 2014.
  • [17] Wang ZY, Huang L, Li JJ. Microstructure and properties of friction stir welded 2219 aluminum alloy under heat treatment and electromagnetic forming process. Metals. 2018;8:305–17.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29eef161-1333-4e79-968f-47332ec5a003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.