Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konwolucyjne sieci neuronowe do wczesnej diagnostyki komputerowej dysplazji u dzieci
Języki publikacji
Abstrakty
The problem in ultrasound diagnostics hip dysplasia is the lack of experience of the doctor in case of incorrect orientation of the hip joint and ultrasound head. The aim of this study was to evaluate the ability of the convolutional neural network (CNN) to classify and recognize ultrasound imaging of the hip joint obtained at the correct and incorrect position of the ultrasound sensor head in the computer diagnosis of pediatric dysplasia. CNN's such as GoogleNet, SqueezeNet, and AlexNet were selected for the study. The most optimal for the task is the use of CNN GoogleNet showed. In this CNN used transfer learning. At the same time, fine-tuning of the network and additional training on the database of 97 standards of ultrasonic images of the hip joint were applied. Image type RGB 32 bit, 210 × 300 pixels are used. Fine-tuning has been performed the lower layers of the structure CNN, in which 5 classes are allocated, respectively 4 classes of hip dysplasia types according to the Graf, and the Type ERROR ultrasound image, where position of the ultrasound sensor head and of the hip joint in ultrasound diagnostics are incorrect orientation. It was found that the authenticity of training and testing is the highest for the GoogleNet network: when classified in the training group accuracy is up to 100%, when classified in the test group accuracy – 84.5%.
Problemem w diagnostyce ultrasonograficznej dysplazji stawu biodrowego jest brak doświadczenia lekarzy w zakresie nieprawidłowej orientacji stawu biodrowego i głowicy ultrasonograficznej. Celem tego badania była ocena zdolności konwolucyjnej sieci neuronowej (CNN) do klasyfikowania i rozpoznawania obrazów ultrasonograficznych stawu biodrowego uzyskanych przy prawidłowym i nieprawidłowym położeniu głowicy ultrasonograficznej we wspomaganej komputerowo diagnostyce dysplazji dziecięcej. Do badania wybrano sieci CNN, takie jak GoogleNet, SqueezeNet i AlexNet. Wykazano, że najbardziej optymalne dla tego zadania jest użycie CNN GoogleNet. Jednocześnie w CNN zastosowano metodologię uczenia transferowego. Zastosowano precyzyjne dostrojenie sieci i dodatkowe szkolenie na podstawie 97 próbek obrazów ultrasonograficznych stawu biodrowego, typ obrazu RGB 32 bity, 210 × 300 pikseli. Przeprowadzono dostrajanie dolnych warstw struktury CNN, w której zidentyfikowano 5 klas, odpowiednio 4 klasy typów dysplazji stawu biodrowego według Grafa oraz obraz ultrasonograficzny typu ERROR, w którym pozycja głowicy ultrasonograficznej i stawu biodrowego w diagnostyce ultrasonograficznej mają nieprawidłową orientację. Stwierdzono, że niezawodność szkolenia i testowania jest najwyższa dla sieci GoogleNet: podczas klasyfikacji w grupie szkoleniowej dokładność wynosi do 100%, podczas klasyfikacji w grupie testowej dokładność wynosi 84,5%.
Rocznik
Tom
Strony
56--63
Opis fizyczny
Bibliogr. 24 poz., tab., rys., wykr.
Twórcy
autor
- Vinnytsia National Technical University, Vinnytsia, Ukraine
- Vinnytsia National Agrarian University, Vinnytsia, Ukraine
autor
- National Pirogov Memorial Medical University, Vinnytsya, Ukraine
autor
- National Pirogov Memorial Medical University, Vinnytsya, Ukraine
- Vinnytsia National Agrarian University, Vinnytsia, Ukraine
autor
- National Pirogov Memorial Medical University, Vinnytsya, Ukraine
autor
- D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan
autor
- Mykhailo Kotsubynsky State Pedagogical University, Vinnytsya, Ukraine
autor
- D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan
Bibliografia
- [1] Bilynsky Y. Y., Urvan O. G., Guralnyk A. B.: Modern methods of perinatal diagnosis of hip dysplasia: global trends. Scientific Proceedings of VNTU 4, 2019, 40–50.
- [2] Bilynsky Y. Y. et al.: Overview of methods of ultrasound diagnosis of hip dysplasia and determination of the most appropriate of them for computer prediction of the disease. Medical Informatics and Engineering 3, 2019, 49–58 [http://doi.org/10.11603/mie.1996-1960.2019.3.10432].
- [3] Bilynsky Y. Y. et al.: Algorithm of computer diagnostics of 2D ultrasound images of hip dysplasia. Modern problems of information communications, radioelectronics and nanosystems. International scientific and technical conference, Vinnytsia 2019, 150–153.
- [4] Bilynsky Y. Y. et al.: Computer analysis of 2D ultrasound images of the hip joint and measurement of its geometry. Information Technologies and Computer Engineering 3(46), 2019, 4–13 [http://doi.org/10.31649/1999-9941-2019-46-3-4-14].
- [5] Bilynsky Y. Y. et al.: Contouring of microcapillary images based on sharpening to one pixel of boundary curves. Proc. SPIE 10445, 2017, 104450Y [http://doi.org/10.1117/12.2281005].
- [6] Bilynsky Y. et al.: Controlling geometric dimensions of small-size complex-shaped objects. Proc. SPIE 10445, 2017, 104450I [http://doi.org/10.1117/12.2280899].
- [7] Breve F. A.: COVID-19 detection on Chest X-ray images: A comparison of CNN architectures and ensembles. Expert Systems With Applications, 2022, [http://doi.org/10.1016/j.eswa.2022.117549].
- [8] Dahlström H.: Dynamic ultrasonic evaluation of congenital hip dislocation. University of Umeå, 1989.
- [9] Forrest N. I. et al.: SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. arXiv:1602.07360, 2016.
- [10] Graf R. et al.: Hip sonography update. Quality-management, catastrophes-tips and tricks. Medical Ultrasonography 15(4), 2013, 299–303.
- [11] Graf R.: The diagnosis of congenital hip-joint dislocation by the ultrasonic combound treatment. Arch. Orth. Traum. Surg. 97, 1980, 117–133, [http://doi.org/10.1007/BF00450934].
- [12] Harcke H. et al.: Examination of the infant hip with real-time ultrasonography. J. Ultrasound Med. 3, 1984, [http://doi.org/10.7863/jum.1984.3.3.131].
- [13] Krasilenko V. et al.: Modeling optical pattern recognition algorithms for object tracking based on nonlinear equivalent models and subtraction of frames. Proc. SPIE 9813, 2015, 981302 [http://doi.org/10.1117/12.2205779].
- [14] Krasilenko V. et al.: Design and simulation of programmable relational optoelectronic time-pulse coded processors as base elements for sorting neural networks. Proc. SPIE 7723, 2010, 77231G [http://doi.org/10.1117/12.851574].
- [15] Krasilenko V. et al.: Design and simulation of optoelectronic complementary dual neural elements for realizing a family of normalized vector 'equivalence-nonequivalence' operations. Proc. SPIE 7703, 2010, 77030P [http://doi.org/10.1117/12.850871].
- [16] Krizhevsky A. et al.: ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6), 2017, 84–90.
- [17] Marochko N. V.: Ultrasound study of hip joints in children of the first year of life: textbook for the system of post-graduate professional education of doctors. Izd. IPKSZ center, Khabarovsk 2008.
- [18] Morin C. et al.: The infant hip: real-time US assessment of acetabular development. Radiology 157, 1985, 673–677.
- [19] Rosendahl K. et al.: Developmental dysplasia of the hip: prevalence based on ultrasound diagnosis. Pediatr. Radiol. 26(9), 1996, 635–639, [http://doi.org/10.1007/BF01356824].
- [20] Shokraei F. et al.: From CNNs to GANs for cross-modality medical image estimation. Computers in Biology and Medicine 146, 2022, 105556.
- [21] Szegedy C. et al.: Going deeper with convolutions. ArXiv 2014 [http://arxiv.org/pdf/1409.4842.pdf].
- [22] Terjesen T., Bredland T., Berg V.: Ultrasound for hip assessment in the newborn. J Bone Joint Surg Br. 71(5), 1989, 767–773.
- [23] Wang D. et al.: Deep Learning for Identifying Metastatic Breast Cancer. ArXiv 2016 [http://arxiv.org/pdf/1606.05718.pdf].
- [24] Weiss K., Khoshgoftaar T. M., Wang D.: A Survey of Transfer Learning. Journal of Big Data 3(1), 2016, 1–9 [http://doi.org/10.1186/s40537-016-0043-6].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29ea0afe-7dd3-4574-80b5-8e73df4892ee