Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes an original numerical criterion for the duration analysis of non-chaotic transients based on the Euclidean norm of a properly defined vector. For this purpose, transient trajectories, prior to their entering a small neighbourhood of the limit cycle, are used. The vector has been defined with its components constituting the lengths of the sections, which connect the origin of the coordinate system with appropriately determined transient trajectory points. The norm of the vector for the analysis of non-chaotic transients has also been applied. As an assessment criterion of transients, the convergence of the norm to small neighbourhood of the limit cycle with the assumed accuracy is used. The paper also provides examples of the application of this criterion to the Van der Pol oscillators in the case of periodic oscillations.
Czasopismo
Rocznik
Tom
Strony
388--392
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
- Faculty of Computer Science and Technology, Lomza State University of Applied Sciences, ul. Akademicka 14, 18-400 Lomza, Poland
autor
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
autor
- Faculty of Computer Science and Technology, Lomza State University of Applied Sciences, ul. Akademicka 14, 18-400 Lomza, Poland
Bibliografia
- 1. Peitgen H., Jurgens H., Saupe D. Pascal’s Triangle: Cellular Automata and Attractors. Chaos and Fractals. Springer New York NY. 2004; 377-422. https://doi.org/10.1007/0-387-21823-8_9
- 2. Kravtsov S., Sugiyama N., Tsonis A. Transient behavior in the Lorenz model. Nonlinear Processes in Geophysics Discussions. 2014; 1.2: 1905-1917. https://doi.org/10.5194/npgd-1-1905-2014
- 3. Gear C. Numerical initial value problems in ordinary differential equations. Prentice-Hall series in automatic computation. 1971.
- 4. Press W. et al. Numerical recipes in C++. The art of scientific computing’ 2007; 2: 1002.
- 5. Wu D. Wang Z. A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach. Computer physics communications’ 2006; 174.6: 447-463. https://doi.org/10.1016/j.cpc.2005.09.006
- 6. Wang Z. P-stable linear symmetric multistep methods for periodic initial-value problems. Computer Physics Communications. 2005; 171.3: 162-174. https://doi.org/10.1016/j.cpc.2005.05.004
- 7. Jordan D., Smith P. Nonlinear ordinary differential equations: an introduction for scientists and engineers. OUP Oxford. 2007; 8.
- 8. Alghassab M. et al. Nonlinear control of chaotic forced Duffing and van der pol oscillators. International Journal of Modern Nonlinear Theory and Application. 2017; 6.: 26-31. https://doi.org/10.4236/ijmnta.2017.61003
- 9. Bellman R., Bentsman J., Meerkov S. Vibrational control of nonlinear systems: Vibrational controllability and transient behavior. IEEE Transactions on Automatic Control. 1986; 31.8: 717-724. https://doi.org/10.1109/TAC.1986.1104383
- 10. Szczebiot R. Jordan A. Criterion for transient behaviour in a nonlinear Duffing oscillator. Przegląd Elektrotechniczny. 2019; 95. https://doi.org/10.15199/48.2019.04.36
- 11. Tel T. The joy of transient chaos. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2015; 25.9: 097619. https://doi.org/10.1063/1.4917287
- 12. Kovacic, I., Brennan, M. The Duffing equation: nonlinear oscillators and their behaviour. John Wiley & Sons. 2011. https://doi.org/10.1002/9780470977859
- 13. Zumdieck A. et al. Long chaotic transients in complex networks. Physical Review Letters. 2004; 93.24: 244103. https://doi.org/10.1103/PhysRevLett.93.244103
- 14. Tel T., Lai Y. Chaotic transients in spatially extended systems. Physics Reports. 2008; 460.6: 245-275. https://doi.org/10.1016/j.physrep.2008.01.001
- 15. Cooper M., Heidlauf P., Sands T. Controlling chaos-Forced van der pol equation. Mathematics. 2017; 5.4: 70. https://doi.org/10.3390/math5040070
- 16. Sabarathinam S., Volos Ch., Thamilmara K. Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dynamics’ 2017; 87.1: 37-49. https://doi.org/10.1007/s11071-016-3022-8
- 17. Vahedi H., Gharehpetian G., Karrari M. Application of duffing oscillators for passive islanding detection of inverter-based distributed generation units. IEEE Transactions on Power Delivery’ 2012; 27.4: 1973-1983. https://doi.org/10.1109/TPWRD.2012.2212251
- 18. Tsatsos M. The Van der Pol equation. arXiv preprint arXiv. 2008; 0803.1658. https://arxiv.org/ftp/arxiv/papers/0803/0803.1658.pdf
- 19. Bobtsov A. et al. Adaptive observer design for a chaotic Duffing system. International Journal of Robust and Nonlinear Control. IFAC‐Affiliated Journal. 2009; 19.7: 829-841. https://doi.org/10.1002/rnc.1354
- 20. Tang Y. Distributed optimization for a class of high‐order nonlinear multiagent systems with unknown dynamics. International Journal of Robust and Nonlinear Control. 2018; 28.17: 5545-5556. https://doi.org/10.1002/rnc.4330
- 21. Zduniak B., Bodnar M., Forys U. A modified van der Pol equation with delay in a description of the heart action. International Journal of Applied Mathematics and Computer Science’ 2014; 24.4. https://doi.org/10.2478/amcs-2014-0063
- 22. Kimiaeifar A. et al. Analytical solution for Van der Pol–Duffing oscillators. Chaos, Solitons & Fractals. 2009; 42.5: 2660-2666. https://doi.org/10.1016/j.chaos.2009.03.145
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29e80059-0c9b-401b-8514-c29e0567af65