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Abstract: The paper proposes an original numerical criterion for the duration analysis of non-chaotic transients based on the Euclidean 
norm of a properly defined vector. For this purpose, transient trajectories, prior to their entering a small neighbourhood of the limit cycle, 
are used. The vector has been defined with its components constituting the lengths of the sections, which connect the origin  
of the coordinate system with appropriately determined transient trajectory points. The norm of the vector for the analysis of non-chaotic 
transients has also been applied. As an assessment criterion of transients, the convergence of the norm to small neighbourhood of the limit 
cycle with the assumed accuracy is used. The paper also provides examples of the application of this criterion to the Van der Pol  
oscillators in the case of periodic oscillations. 
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1. INTRODUCTION 

An exact assessment of transient behaviour in physical sys-
tems is very important for many practical reasons. For example, in 
real-time digital simulators, which are applied in the power indus-
try, the exact assessment of transients is also essential for practi-
cal implementations in short-circuit protection systems. The tran-
sient behaviour analysis is also essential when dealing with short 
circuits in the power grid. Control systems, especially the ones 
used in nonlinear systems, must account not only for the transient 
phenomena that occur in them but also for their duration. In the 
analyses of nonlinear systems, neither the superposition principle 
can be used nor can the transient component be separated. It can 
be said that the transient phenomenon is fully integrated into the 
mathematical model of the system and constitutes an inseparable 
problem to be solved. This is the source of additional difficulties of 
transient analysis. In addition, the transient dynamics in nonlinear 
systems depends not only on the parameters of the system but 
also on the choice of initial conditions. Additionally, it should be 
emphasised that chaotic systems are particularly sensitive to the 
latter, where small changes in the initial conditions can cause 
great differences in the nature of the final solution. An example of 
this is the system of Lorenz equations [1, 2]. 

After the introduction of state variables, nonlinear differential 
equations are transformed into a system of the first-order ordinary 
differential equation (ODEs), called the state equations. The 
purpose of these transformations is to simplify the equations so as 
to be able to use numerical methods to solve them [3, 4]. A great 
number of physical systems are modelled by second-order ODEs, 
for example, the Duffing or Van der Pol equations [3, 5, 6, 7, 8, 9]. 
These equations, after their transformation into a system of equa-
tions, are analysed on the phase plane. As a result, for stable 
systems, it is possible to obtain specific phase portraits whose 

trajectories are convergent to the limit cycle. In the transients, 
these trajectories are irregular lines that turn into periodic cycles 
after the transient time ttr [10]. 

In contrast to the paper [10], in which the non-chaotic transi-
ents in the Duffing equations were examined on the basis of the 
analyses of cycle fields, in this paper, the Euclidean norm of a 
properly defined vector was applied to the analyses of the Van der 
Pol's non-chaotic transients. 

The literature available on the subject is very extensive. We 
will now present a brief description of the selected studies regard-
ing the analysis of the transient behaviour occurring in nonlinear 
systems [11-17]. 

Paper [11] presents a general overview of works on transient 
behaviour in chaotic systems, while monograph [12] and disserta-
tion [18] discuss in detail the physical phenomena taking place in 
the Duffing and Van der Pol systems including the methods of 
their analyses. 

Specific transient behaviour is discussed in Zumdieck et al. 
[13]. Long chaotic transients occur in complex networks of pulse-
coupled oscillators. It has been shown that small changes in the 
structure of the system have a decisive influence on its dynamics. 
The paper [2] presents an interesting analysis of the impact of 
initial conditions on the course of transient trajectories. To this 
end, a system of three Lorenz equations has been used. Chaotic 
transients and super transients in spatially extended systems 
have been described in Tél and Lai [14]. These specific states 
occur in the systems described by PDEs (partial differential equa-
tions), e.g., the Navier-Stokes equations. Also, the noteworthy 
results on transient analysis are presented in Cooper et al. [15] 
and Sabarathinam et al. [16]. In the former one, several methods 
of controlling an autonomous Van der Pol oscillator have been 
analysed. It presented transient trajectories using different control 
methods and non-zero initial conditions, entering the limit cycle of 
the system. The latter work discusses an original Duffing system 
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with smooth cubic nonlinearity in the form of a memristor. It shows 
a phase portrait and time evolutions of state variables for non-zero 
initial conditions and selected system parameters. In the paper by 
Vahedi et al. [17], the Duffing oscillator has been used for the 
analyses of distributed-generation (DG) units. The paper analyses 
an oscillator operating in both chaotic and periodic vibrations 
under an appropriate control mode. It presents a characteristic 
phase portrait of the system with transient trajectories of the sys-
tem and characteristic phase portraits. In the case of periodic 
vibrations, transient trajectories enter the limit cycle. Papers 
[19, 20] make use of the transients to estimate encoded parame-
ters of the Duffing and Van der Pol nonlinear systems. 

The paper proposes an original criterion for determining the 
duration of the non-chaotic transient in ODEs, based on the Eu-
clidean norm of a properly defined vector. 

The criterion is illustrated by example analyses for the dura-
tion of transient processes in physical systems described by the 
Van der Pol’s nonlinear equations. 

In our paper, we consider nonlinear systems with a stable 
small neighbourhood of the limit cycle and the temporal length of 
the non-chaotic transient time denoted by ttr. The proposed meth-
od of estimating the transient time ttr is illustrated by analysing the 
Van der Pol equations [8, 21]. The above equations were devel-
oped in the first half of the 20th century. They have been a subject 
of many scientific studies, and the phenomena described in them 
have been frequently discussed. The computations have been 
made using a proprietary program written in C++. The fourth-order 
Runge-Kutta method was applied in the numerical calculations. 
Some selected results were compared with the computations 
obtained by applying the Wolfram Mathematica software. 

2. NUMERICAL CRITERION FOR THE DURATION  
OF NON-CHAOTIC TRANSIENTS IN ODEs 

An accurate time definition for the duration of the non-chaotic 
transients in nonlinear systems, considering its practical applica-
tions, is very important. It can be applied in the analysis of the 
operation of automation systems, the evaluation of the power 
systems security and the analysis of the operation of electronic 
systems. 

The time ttr, in which the transient trajectory enters a small 
neighbourhood of the limit cycle, is assumed as the end of the 
duration of the non-chaotic transients. For further considerations, 
a constant number of N points was assumed for each cycle loop 
of the cycle for determining Euclidean norms (Fig. 1). In this case, 

the assumed N coincides with the step of numerical calculations. 
Each point in N corresponds to the section 

OPi (i =  1,2, … , N). Thus, we define vector, Y: 

Y =  [y1, y2, … , yN] (1) 

wherein: 

yi  =  OPi = (x1,i
2 + x2,i

2)1/2,   (i =  1,2, … , N) (2) 

where 𝑥1 and 𝑥2 are the values of state variables in the resulting 
time intervals 

The Euclidean norm is assigned to vector 𝑌: 

ǁYǁ =  (i= 1
N  yi

2)
1
2 (3) 

where N is the assumed constant number points for each cycle 
loop. 

In interval time, we have a series of ǁYǁk norms: 

ǁYǁk  =  ((i= 1
N  yi

2)
1
2) k, (k =  1,2, … , L) (4) 

where L is the total number of cycles investigated. 
For stable systems, the series of norms  

ǁYǁk (k =  1,2, … , L) converges to a stable norm, which repre-
sents a small neighbourhood of the limit cycle. 

 
Fig. 1. Phase portrait with non-chaotic transients of the Van der Pol  
            system Eq. (6), µ = 0.1, 𝑥1(0)  =  1, 𝑥2(0)  =  0 

Considering the above-mentioned facts, a definition of the du-
ration of non-chaotic transients in nonlinear systems can be pre-
sented as follows. 

In a stable system, described by the system of equations  
ẋ = f(x(t), u(t), t), where x(t) Rn and u(t) Rn, the 

duration of non-chaotic transients is determined by time ttr, in 
which the transient trajectory tends to a small neighbourhood of 
the limit cycle with the condition: 

|ǁYǁk−(ǁYǁm)k|

(ǁYǁm)k
≥ ε , k = L − 1, L − 2, …                                  (5) 

where for each k, (ǁYǁm)k represents the mean value of the 

norms calculated for cycles L, … , k + 1 and ε is a sufficiently 
small number. 

It should be noted that the non-chaotic transients last as long 

as the standard deviations ǁYǁk in criterion (5) are greater by ε 

than the mean value of (ǁYǁm)k. The condition is checked 
cyclically from the end of the integration interval, i.e., from small 

deviations of the norm ǁYǁk for a more precise determination of 

the mean value of (ǁYǁm)k. The first cycle satisfying the 
condition (5) determines the last cycle of the non-chaotic 

transients and therefore its duration ttr. 

3. APPLICATION OF THE PROPOSED CRITERION  
FOR THE VAN DER POL EQUATION 

The Van der Pol equation without the driving force is very of-
ten presented after the application of the Liénard transformation: 

ẋ1 = −x2 

ẋ2 = x1 + μ(x2 −
x2

3

3
). (6) 

The Van der Pol equation applies to systems in which there is 

a nonlinear damping μ(1 − x2), where μ is a small parameter. 
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Using the μ = 0.1 to solve the system (6) with initial conditions 

x1(0)  =  1, x2(0)  =  0, it is possible to obtain a typical phase 

portrait shown in Fig. 1. The convergence of ǁYǁk to (ǁ𝑌ǁ𝑚)𝑘  is 

illustrated in Fig. 2. Assuming ε = 0.005, the transient time ttr is 
found to be ttr = 52.06. 

 
Fig. 2. Chart of ǁYǁk = 𝑓(𝑡), μ = 0.1, x1(0)  =  1, x2(0)  =  0 

An example application of the proposed criterion for the de-
pendence of the transient time on the value of the damping coeffi-

cient µ is given for the driven Van der Pol equation. 
This equation is most often used to describe electronic vibra-

tion generators, although it can be found in other fields of 
knowledge [21, 22]. 

The Van der Pol equation with a driving function b1cos(b2t) 
has the following form: 

d2z

dt2 +
μ(1−z2)dz

dt
+ z = b1cos (b2t), (7) 

where μ is the parameter of the electronic circuit, while b1 and b2 
are the driving parameters. 

Eq. (7) can be represented as a system of equations, taking 

z(t) = x1(t),  dz/dt = x2(t): 

ẋ1 = x2 

ẋ2 = −μ(1 − x1
2)x2 − x1 + b1cos (b2t). (8) 

In further considerations, we adopt damping parameter values 

μ changing in the range 0.01÷0.2 and take: 

b1  =  1.0, b2 =  250. (9) 

 
Fig. 3. Dependence of the non-chaotic transient time ttr  

            on the value of μ 

As a result of solving the system (8), we obtain the phase por-
trait characterising the periodic vibrations. The individual steps of 

the determination of transient time ttr are presented earlier in 
Section 2. 

Fig. 3 presents the chart of the time duration ttr of non-
chaotic transient dependence on the value of the dumping coeffi-
cient μ for the Van der Pol Eq. (8), based on the proposed numer-
ical criterion. 

An example of calculating the transients time ttr based on the 
proposed method for the point μ = 0.05 in Fig. 3 is shown in 
Figs. 4 and 5. 

 
Fig. 4. Phase portrait of Van der Pol system, μ = 0.05, b1  =  1.0,  

           b2 =  250 x1(0)  =  1, x2(0)  =  0 

 
Fig. 5. Chart for ǁYǁk = f(t), μ = 0.05, b1  =  1.0, b2 =  250 

           x1(0)  =  1, x2(0)  =  0 

For higher values of the damping factor μ >  0.2 Eq. (8) in the 
considered time interval in the system, there are vibrations that 
characterise the exemplary attractor shown in Fig. 6. In this case, 
the ǁYǁk norm does not converge. The chart of the ǁYǁk norm for 
the phase portrait from Fig. 6 is shown in Fig. 7. 

In further work, the generalisation of the duration of non-
chaotic transients into higher-order ODEs equations will be con-

tinued. Also, the study of the influence of ε and the other system 
parameters of the duration on non-chaotic transients will be con-
tinued. 
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Fig. 6. Phase portrait of Van der Pol system, μ = 0.3, b1  =  1.0, 

           b2 =  250, x1(0)  =  1, x2(0)  =  0 

 

Fig. 7. Chart for ǁYǁk = f(t), μ = 0.3, b1  =  1.0, b2 =  250, 

           x1(0)  =  1, x2(0)  =  0 

4. FINAL REMARKS AND CONCLUSIONS 

The paper proposes an original numerical criterion for the 
duration analysis of non-chaotic transients based on the 
Euclidean norm of a properly defined vector for second-order 
ODEs systems. The analysed systems are assumed to be stable, 
and their transient trajectories converge to a small neighbourhood 
of the limit cycle. In order to assess time ttr, a series of Euclidean 

norms ǁYǁk of vector Y are used. The vector’s components 

include the length values of OPi sections in successive trajectory 
cycles, where  

OPi = (x1,i
2 + x2,i

2)1/2. In a nonlinear stable system with the 

limit cycle, the ǁYǁk series is convergent to the mean value of 
(ǁYǁm)k calculated from the end of the time interval, 
characteristic of the phase portrait reflecting the periodic 
oscillation. The proposed criterion is illustrated by examples of the 
analyses for the duration of transient processes in physical 
systems described by Van der Pol nonlinear equations. The 
proposed criterion is relatively simple and easy to apply to many 
practical engineering issues. 

The method can be also generalised to higher-order ODEs. 
For example, when analysing the non-chaotic transients modelled 

by Lorenz equations, the tests should be carried out in space R3, 

with OPi = (x1,i
2 + x2,i

2 + x3,i
2)1/2. In this case, the series of 

norms ǁYǁk converges to the mean norm (ǁ𝑌ǁ𝑚)𝑘 computed in 
three-dimensional space. 
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