PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indifference pricing with counterparty risk

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present counterparty risk by a jump in the underlying price and a structural change of the price process after the default of the counterparty. The default time is modeled by a default-density approach. Then we study an exponential utility-indifference price of an European option whose underlying asset is exposed to this counterparty risk. Utility-indifference pricing method normally consists in solving two optimization problems. However, by using the minimal entropy martingale measure, we reduce to solving just one optimal control problem. In addition, to overcome the incompleteness obstacle generated by the possible jump and the change in structure of the price process, we employ the BSDE-decomposition approach in order to decompose the problem into a global-before-default optimal control problem and an after-default one. Each problem works in its own complete framework. We demonstrate the result by numerical simulation of an European option price under the impact of jump’s size, intensity of the default, absolute risk aversion and change in the underlying volatility.
Rocznik
Strony
695--702
Opis fizyczny
Bibliogr. 10 poz., wykr.
Twórcy
autor
  • John von Neumann Institute-Vietnam National University, VNU IT Park, Linh Trung Ward, Thu Duc District, HCMC, Vietnam
autor
  • John von Neumann Institute-Vietnam National University, VNU IT Park, Linh Trung Ward, Thu Duc District, HCMC, Vietnam
autor
  • John von Neumann Institute-Vietnam National University, VNU IT Park, Linh Trung Ward, Thu Duc District, HCMC, Vietnam
Bibliografia
  • [1] N. El Karoui, M. Jeanblanc, and Y. Jiao, “What happens after a default: the conditional density approach”, Stoch. Proc. Appl. 120 (7), 1011‒1032 (2010).
  • [2] S. D. Hodges, “Optimal replication of contingent claims under transaction costs”, Review of Futures Markets 8, 223‒238 (1989).
  • [3] M. Mania and M. Schweizer, “Dynamic exponential utility indifference valuation”, Ann. Appl. Probab. 15 (3), 2113‒2143 (2005).
  • [4] Y. Jiao, I. Kharroubi, and H. Pham, “Optimal investment under multiple defaults risk: a BSDE-decomposition approach”, Ann. Appl. Probab. 23 (2), 455‒491 (2013).
  • [5] M. Jeanblanc and Y. Le Cam, “Progressive enlargement of filtrations with initial times”, Stoch. Proc. Appl. 119 (8), 2523‒2543 (2009).
  • [6] R. Mansuy and M. Yor, Random Times and Enlargements of Filtrations in a Brownian Setting, Springer, 2006.
  • [7] P. Protter and K. Shimbo, “No arbitrage and general semimartingales” in Markov Processes and Related Topics: a Festschrift for Thomas G. Kurtz, 267‒283, Institute of Mathematical Statistics, 2008.
  • [8] S. Ihara, Information Theory for Continuous Systems, vol. 2, World Scientific, 1993.
  • [9] R.M. Corless, G.H. Gonnet, D.E. Hare, D.J. Jeffrey, and D.E. Knuth, “On the Lambert w function”, Adv. Comput. Math. 5 (1), 329‒359 (1996).
  • [10] E. Gobet, J.-P. Lemor, and X.Warin, “A regression-based Monte Carlo method to solve backward stochastic differential equations”, Ann. Appl. Probab. 15 (3), 2172‒2202 (2005).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29e7b229-7392-456c-aa71-00824e01d2ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.