Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The publication presents and reviews the results of a physical modelling study of the Cross Wedge Rolling process of ball-studs. The ball-studs was formed in a double system from C45 steel at 1050°C, while the physical modelling process was performed on a scale of 1:2.5 using Primo plasticine as the model material, which was formed at 5°C. For the real tests, steel tools were used, while for the model tests the tools were made of ABS plastic. The experimental tests were followed by measurements of the individual stud steps. The geometrical analysis of the specimens showed that the model material allowed the shape of the forging obtained in the rolling process to be accurately modelled. Based on the physical modelling studies of the Cross Wedge Rolling process of ball-studs, it was concluded that the ball-studs rolling process can be modelled using PRIMO plasticine. Based on the analysis of the physical modelling results obtained, it was concluded that physical modelling allows the Cross Wedge Rolling process to be modelled with a high convergence of the results obtained in real and physical tests.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1293--1302
Opis fizyczny
Bibliogr. 55 poz., fot., rys., tab., wzory
Twórcy
autor
- Lublin University of Technology, 38 D. Nadbystrzycka Str., 20-618 Lublin, Poland
autor
- Lublin University of Technology, 38 D. Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
- [1] Ł. Wójcik, Z. Pater, Physical simulation of the Mannesmann effect in the rolling process. Archives of Metallurgy and Materials 64 (4), 1369-1375 (2019). DOI: https://doi.org/10.24425/amm.2019.130103
- [2] G.V. Andreev, L.V. Guzjavicus, E.M. Makusok, V.J. Scukin, Vybor geometričeskich parametrov klinovogo instrumenta. Abrazivnaja Obrabotka i Obrabotka Metallov Rezaniem i Davlenem, 73-76 (1975).
- [3] Ł. Wójcik, Z. Pater, T. Bulzak, J. Tomczak, Physical Modeling of Cross Wedge Rolling Limitations. Materials 13 (4), (2020). DOI: https://doi.org/10.3390/ma13040867
- [4] M. Arentoft, Z. Gronostajski, A. Niechajowicz, T. Wanheim, Physical and mathematical modelling of extrusion processes. Journal of Materials Processing Technology 106 (1-3), 2-7 (2000). DOI: https://doi.org/10.1016/S0924-0136(00)00629-4
- [5] L. Kowalczyk, Wydawnictwo instytutu technologii eksploatacji, Modelowanie fizykalne procesów obróbki plastycznej. Radom (1995).
- [6] V. Mandic, M. Stefanovic, Physical modeling and FEM simulation of the hot bulk forming processes. Journal for Technology of Plasticity 27 (1-2), 41-53 (2002).
- [7] H. Sofuoglu, J. Rasty, Flow behavior of Plasticine used in physical modeling of metal forming processes. Tribology International 33 (8), 523-529 (2000). DOI: https://doi.org/10.1016/S0301-679X(00)00092-X
- [8] K. Świątkowski, Analiza badań modelowych z użyciem materiałów woskowych. Obróbka Plastyczna Metali (5), 5-4 (1994).
- [9] T. Wanheim, Trends in physical simulation of metal working processes. Proceedings of the the 4th Cairo University Conference on Mechanical Design and Production Cairo University, 27-28 (1988).
- [10] A. Auer, PWN, Modelowanie analogowe procesów o stałych rozłożonych. Warszawa (1976).
- [11] Z. Gabryszewski, J. Gronostajski, PWN, Mechanika procesów obróbki plastycznej. Warszawa (1991).
- [12] J. Hawryluk, WNT, Maszyna cyfrowa narzędziem człowieka współczesnego. Warszawa (1974).
- [13] G.L. Himicz, M.B. Caljuk, Optimizacja reżimow chołodnoj sztampowski.
- [14] O.C. Zienkiewicz, Arkady, Metoda elementów skończonych. Warszawa (1974).
- [15] V. Vazquez, T. Altan, New concepts in die design - physical and computer modeling applications. Journal of Materials Processing Technology 98 (2), 212-223 (2000). DOI: https://doi.org/10.1016/S0924-0136(99)00202-2
- [16] K. Chijiiwa, Y. Hatamura, N. Hasegawa, Chracteristics of plasticine used in the simulation of slab in rolling and Continous Casting. Transations ISIj 21, 178-186 (1981). DOI: https://doi.org/10.2355/tetsutohagane1955.66.5_496
- [17] U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics 25 (2-3), 151-167 (1997).
- [18] A. Auer, PWN, Modelowanie analogowe procesów o stałych rozłożonych. Warszawa (1976).
- [19] H. Sofuoglu, Texas Tech University, Physical modeling of extrusion process. Texas (1990).
- [20] K. Świątkowski, R. Cacko, Investigations of new wax-based model materials simulating metal working process. Journal of Materials Processing Technology 72 (2), 267-271 (1997). DOI: https://doi.org/10.1016/S0924-0136(97)00179-9
- [21] P.F. Bariani, G. Berti, L.D’Angelo, R. Meneg, Physical Simulation Using Model Material for the Investigation of Hot-Forging Operations. Advanced Manufacturing Systems and Technology 372, 347-354 (1996). DOI: https://doi.org/10.1007/978-3-7091-2678-3_4
- [22] E. Hossain, C. Ketata, Experimental study of physical and mechanical properties of natural and synthetic waxes using uniaxial compreesive strenth test. Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization 1-5 (2009).
- [23] H.F. Massey, The Flow of Metal During Forging. Proceedings of the Manchester Association of Engineers, 1-3 (1921).
- [24] J.L. Holmquist, Investigation of the piercing processes by means of model wax billets. Iron Steel Engineering 29, 56-65 (1952).
- [25] C.R. Boer, N. Rebelo, H. Rydstad, G. Schroder, Springer, Process modeling of metal forming and thermomechanical treatment. Berlin (1986).
- [26] T. Takemasu, V. Vazquez, B. Painter, T. Altan, Investigation of Metal Flow and Preform Optimization in Flashless Forging of a Connecting Rod. Journal of Materials Processing Technology 59, 95-105 (1996). DOI: https://doi.org/10.1016/0924-0136(96)02290-X
- [27] V. Vazquez, K. Sweeney, D. Wallace, C. Wolff, M. Ober, T. Altan, Tooling and Process Design to Cold Forge a Cross Groove Inner Race for a Constant Velocity Joint - Physical Modeling and FEM Process Simulation. Journal of Materials Processing Technology 59, 144-157 (1996). DOI: https://doi.org/10.1016/0924-0136(96)02295-9
- [28] L. Yuli, D. Kun, Z. Mei, Y. He, Z. Fuwei, Physical modeling of blade forging. Journal of Materials Processing Technology 99, 141-144 (2000). DOI: https://doi.org/10.1016/S0924-0136(99)00406-9
- [29] S. Fujikawa, Application of CAE for Hot-Forging of Automotive Components. Journal of Materials Processing Technology 98, 176-188 (2000). DOI: https://doi.org/10.1016/S0924-0136(99)00196-X
- [30] M. Zhan, Y. Liu, Y. He, Physical Modeling of the Forging of a Blade witha Damper Platform Using Plasticine. Journal of Materials Processing Technology 117, 62-65 (2001).
- [31] A. Assempour, S. Razi, Determination of Load and Strain-Stress Distributions in Hot Closed Die Forging Using the Plasticine Modeling Technique. International Journal of EngineeringTransactions B: Applications 2 (15), 167-172 (2002).
- [32] Z. Gronostajski, M. Hawryluk, The main aspects of precision forging. Archives of Civil and Mechanical Engineering 2 (8), 39-55 (2008). DOI: https://doi.org/10.1016/S1644-9665(12)60192-7
- [33] R. Hoseini-Ara, P. Yavari, A new criterion for preform design of H-shaped hot die forging based on shape complexity. International Journal Material 11, 233-238 (2018).
- [34] B.G. Ravn, C.B. Andersen, T. Wanheim, Pressure contours on forming dies. Part 1. Simulation using physical modeling technique. Journal of Materials Processing Technology 115, 212-219 (2015). DOI: https://doi.org/10.1016/S0924-0136(01)00808-1
- [35] H. Sofuoglu, H. Gedikli, Physical and numerical analysis of three dimensional extrusion process. Computational Materials Science 31, 113-124 (2004).
- [36] P. Kazanowski M.E. Epler, W.Z. Misiołek, Bi-metal rod extrusionprocess and product optimization. Material Science and Engineering A 369, 170-180 (2004). DOI: https://doi.org/10.1016/j.msea.2003.11.002
- [37] W. Zhou, J. Lin, T.A. Dean, L. Wang, Feasibility studies of a novel extrusion process for curved profiles: Experimentation and modeling. International Journal of Machine Tools and Manufacture 126, 27-43 (2018). DOI: https://doi.org/10.1016/j.ijmachtools.2017.12.001
- [38] M. Hawryluk, D. Wilk-Kołodziejczyk, K. Regulski, M. Głowacki, Development of an approximation model of selected properties of model materials used for simulations of bulk metal plastic forming processes using induction of decision trees. Archives of Metallurgy and Materials 64, 1073-1085 (2019). DOI: https://doi.org/10.3934/matersci.2022020; DOI: https://doi.org/10.24425/amm.2019.129497
- [39] T. Awano, A. Danno, Metal flow on rolled shafts - a study of hot hot rolling of stepped shafts part 1. Sosei to Kako (5), 258-295 (1968).
- [40] K. Komori, Simulation of Mannesmann piercing process by the three-dimensional rigid-plastic finite-element method. International Journal of Mechanical Sciences 12 (47), 1838-1853 (2005). DOI: https://doi.org/10.1016/j.ijmecsci.2005.07.009
- [41] X. Zhou, Z. Shao, C. Zhang, F. Sun, W. Zhou, L. Hua, J. Jiang, L. Wang, The study of central cracking mechanism and criterion in cross wedge rolling. International Journal of Machine Tools and Manufacture 159, 103647 (2020). DOI: https://doi.org/10.1016/j.ijmachtools.2020.103647
- [42] Ł. Wójcik, Z. Pater, T. Bulzak, J. Tomczak, K. Lis, A Comparative Analysis of the Physical Modelling of Two Methods of Balls Separation. Materials 14 (23), 1-20 (2021). DOI: https://doi.org/10.3390/ma14237126
- [43] Ł. Wójcik, Z. Pater, Physical analysis of cross-wedge rolling process of a stepped shaft. Advances in Science and Technology Research Journal 11 (4), 60-67 (2017). DOI: https://doi.org/10.12913/22998624/75966
- [44] Z. Pater, J. Tomczak, Ł. Wójcik, T. Bulzak, Physical modelling of the ball-rolling processes. Metals 9 (1), 1-14 (2019). DOI: https://doi.org/10.3390/met9010035
- [45] T. Bulzak, Z. Pater, J. Tomczak, K. Majerski, Hot and warm cross-wedge rolling of ball pins - Comparative analysis. Journal of Manufacturing Processes 50, 90-101 (2020). DOI: https://doi.org/10.1016/j.jmapro.2019.12.001
- [46] J. Tomczak, T. Bulzak, Z. Pater, Theoretical and experimental analysis of rotary compression of ball pins hollow forgings. Advances in Science and Technology Research Journal 10 (32), 109-117 (2016). DOI: https://doi.org/10.12913/22998624/65129
- [47] Z. Pater, J. Tomczak, T. Bulzak, S. Martyniuk, A helical wedge rolling process for producing a ball pin. Procedia Manufacturing 27, 27-32 (2018). DOI: https://doi.org/10.1016/j.promfg.2018.12.039
- [48] K. Chijiiwa, Y. Hatamura, T. Suzuki, Experimental method of stress simulation of rolling and continuously cast slab by plasticine. Transaction ISiJ 21, 502-511 (1981). DOI: https://doi.org/10.2355/tetsutoh gane1955.66.8_1103
- [49] H. Sofuoglu, J. Rasty, Three-Dimensional Analysis of Extrusion Process by Utilizing the Physical Modeling Technique, Journal of Energy Resources Technology. Transactions of the ASME 115 (1), 32-40 (1993). DOI: https://doi.org/10.1115/1.2905967
- [50] K. Świątkowski, Badania porównawcze własności materiałów modelowych uzyskiwanych różnymi metodami. Rudy i Metale Nieżelazne 50 (8), 448-451 (2005).
- [51] A. Segawa, K. Kawanami, Rolling-deformation characteristics of clad materials determined by model experiment and numerical simulation: experimental rolling tests using plasticine. Journal of Materials Processing Technology 47 (3-4), 375-384 (1995). DOI: https://doi.org/10.1016/0924-0136(95)85010-4
- [52] Z. Huang, M. Lucas, M. Adams, Modelling wall boundary conditions in an elasto-viscoplastic material forming process. Journal of Materials Processing Technology 107 (1-3), 267-275 (2000). DOI: https://doi.org/10.1016/S0924-0136(00)00705-6
- [53] C.-K. Shih, C. Hung, Experimental and numerical analyses on three-roll planetary rolling process. Journal of Materials Processing Technology 142 (3), 702-709 (2003). DOI: https://doi.org/10.1016/S0924-0136(03)00810-0
- [54] M. Mirsaeidi, F. Reza Biglari, K. Nikbin, E. Moazami Goudarzi, S. Bagherzadeh, Optimum forging preform shape design by interpolation of boundary nodes. Proceedings of the World Congress on Engineering 2 (1-3), (2009).
- [55] S.F. Wong, P. Hodgson, C.J. Chong, P.F. Thomson, Physical modelling with application to metal working, especially to hot rolling. Journal of Materials Processing Technology 62 (1-3), 260-274 (1996). DOI: https://doi.org/10.1016/0924-0136(95)02219-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29e5fc84-54c9-4893-91b9-ce6b26fb2dcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.