PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallel computing techniques on enhancement of thermal-hydraulic analysis of fluid flow networked systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Techniki obliczeniowe rownoległe usprawniające analizę termiczną oraz hydrauliczną sieci przepływowych
Języki publikacji
EN
Abstrakty
EN
The considerable computation time of a practical application of sequential algorithms for simulating thermal and flow distribution in fluid flow networked systems (FFNS’s) is the motivating factor to study their parallel implementation. The mathematical model formulated and studied in the paper requires the solution of a set of nonlinear equations, which are solved by the Newton-Raphson method. An object-oriented solver automatically formulates the equations for networks of an arbitrary topology. The hydraulic model that is chosen as a benchmark consists of nodal flows and loop equations. A general decomposition algorithm for analysis of flow and temperature distribution in a FFNS is presented, and results of speedup of its parallel implementation are demonstrated.
PL
Zaproponowano model do symulacji równoległej zadania analizy statycznego przepływu cieczy w sieciach przepływowych. Model sprowadza się do rozwiązania układów równan nieliniowych metodą Newtona-Raphsona. Przedstawiono algorytm dekompozycyjny do analizy rozdysponowania przepływu i temperatur w sieci przepływowej oraz wyniki przyspieszenia jego implementacji równoległej.
Rocznik
Strony
18--23
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Department of Software Engineering, Faculty of Computer Science, West Pomeranian University of Technology, ul. Zolnierska 49, 71-210 Szczecin, Poland
Bibliografia
  • [1] Kondrashenko, V., Vinnichuk, S., Fedorov M.: Simulation of Gas and Liquid Distributing Systems, Naukova Dumka, Kiev, 1990 (in Russian)
  • [2] Massoud M.: Engineering Thermofluids, Springer-Verlag, Berlin Heidelberg New York, 2005
  • [3] Idelchik I.E.: Handbook of Hydraulic Resistances, Machynostrojenije, Moscow, 1992 (in Russian)
  • [4] Donachie R.P.: Digital Program for Water Network Analysis, J. Hydraulics Div., vol.100, HY3, ASCE, pp. 393–403, 1974
  • [5] Chandrashekar M.: Extended Set of Components in Pipe Networks, J. Hydraulic Div., vol. 106, HY1, ASCE pp 133–149, 1980
  • [6] Nogueira A.C.: Steady-State Fluid Network Analysis, J. Hydraulic Eng., vol.119, 3, pp. 431–436, 1993
  • [7] Nielsen B.N.: Methods for Analyzing Pipe Networks, J. Hydraulic Eng., vol.115, 2, ASCE, pp. 139–157, 1989
  • [8] Altman T., Boulos P.F.: Convergence of Newton Method in Nonlinear Network Analysis, Mathl. Comput. Modelling, vol.21, 4, Elsevier, pp. 35–41, 1995
  • [9] Chandrashekar M.: Extended Set of Components in Pipe Networks, J. Hydraulic Div., vol. 106, HY1, pp. 133–149, 1980
  • [10] Evdokimov, A.G.: Optimal Problems of Engineering Networks, Wyzsha Shkola, Charkov, 1976 (in Russian)
  • [11] Merenkov A.P., Chasilev V.J.: Theory of Hydraulic Circuits, Nauka, Moscow, 1985 (in Russian)
  • [12] Larock B.E., Jeppson R.W., Watters G.Z.: Hydraulics of Pipeline Systems, CRC Press, Boca Raton London New York Washington, D.C., 2000
  • [13] Osiadacz A.J.: Steady-state Simulation of Gas Networks, Fluid systems Sp., Warszawa, 2001 (in Polish)
  • [14] Sennova E.V., Sidler V.G.: Mathematical Simulation and Optimization of Evolving Heat Supply Systems, Nauka, Novosibisk, 1987 (in Russian).
  • [15] Boulos P.F, Wood D.J.: Explicit Calculation of Pipe Network Parameters, J. Hydraulic Eng., vol. 116, ASCE, pp. 1329–1344, 1990a
  • [16] Fedorov M.: Automation of Mathematical Model Construction for the Analysis of Heat Regimes of Heat Exchanger Systems by the Method of Gauss Convolution, Electronic modeling, vol.22, 6, (2000), pp. 19–25 (in Russian) Engineering Simulation, vol.18, pp. 727–734, 2001 (English translation)
  • [17] Fedorov M.: Steady-State Simulation of Heat Exchanger Networks, Electronic modeling, vol.24, 1, pp. 101–111, 2002 (in Russian)
  • [18] Filho L.O.F., Queiroz E.M., Costa A.L.H.: A Matrix Approach for Steady-State Simulation of Heat Exchanger Networks, Applied Thermal Eng 27, pp. 2385–2393, 2007
  • [19] Fedorov M.: Thermal Modes Simulation of Heat Exchanger Networks Having Turbo-machines, Proceedings of the Int. Conf. On Marine Technology IV, WIT Press, Southampton, pp. 309–314, 2001
  • [20] http://openmp.org. OpenMP Standard.
  • [21] Cheng N.: Formulas for friction factor in transitional regimes, Journal of Hydraulic Engineering, 134(9), pp 1357–1362, 2008
  • [22] Kanevets G.E.: Heat Exchangers and Heat Exchanger Systems, Naukowa Dumka, Kiev, 1982 (in Russian)
  • [23] Bialecki R.A., Kruczek T.: Frictional Diathermal Flow of Steam in a Pipeline, Chem. Eng. Sc., vol.51, 19, pp. 4369–4378, 1996
  • [25] Kays W.M., London A.L.: Compact Heat Exchangers, 3rd ed., McGraw-Hill, New York, 1984
  • [26] Dennis J., Schnabel R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM, Philadelphia, 1996
  • [27] Rice J.R.: Matrix computations and mathematical software, McGraw-Hill, New York, 1996
  • [28] Ciegis Raim., Ciegis Rem., Meilunas M., Jankeviciute˙ G., Starikovicius V.: Parallel mumerical algorithm for optimization of electrical cables, Mathematical Modelling and Analysis, vol.13, 4, pp. 471–482, 2008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29e18acd-892f-48c2-85cb-514cd8f401fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.