PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current limiting algorithm for three-phase grid-connected inverters

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grid-connected inverters are commonly used in systems of renewable energy to convert this energy source into AC power with parameters suitable for connection to the grid. In the normal operating conditions, the grid-connected inverters mainly generate active power to the grid. However, when a voltage sag or voltage imbalance occurs, the grid voltage imbalance in the conventional control methods causes negative sequence components and increases the output current magnitude of inverters. The increase of current can damage power semiconductor devices. This paper presents a strategy to limit the current magnitude of inverters under unbalanced grid voltage conditions. In this strategy, a multiple-complex-coefficient filter is used to eliminate the negative sequence voltage components. This method does not require any additional hardware. A three-phase gridconnected photovoltaic inverter system using a solar array of 20 kWp is also used for the survey. The effectiveness has been validated when comparing the simulation results on Matlab/Simulink of the proposed method with those of the conventional method.
Rocznik
Strony
559--579
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Hochiminh City University of Technology and Education, Vietnam
Bibliografia
  • [1] Chen Z., Guerrero J.M., Blaabjerg F., Member S., A Review of the State of the Art of Power Electronics for Wind Turbines, Transactions of Power Electronics, vol. 24, no. 8, pp. 1859–1875 (2009), DOI: 10.1109/TPEL.2009.2017082.
  • [2] Teodorescu R., Liserre M., Rodriguez P., Grid Converters for Photovoltaic and Wind Power Systems (2011).
  • [3] Kacejko P., Pijarski P., Gryniewicz-Jaworska M., Generation and absorption of reactive power by wind farms – consequences of implementation of EU, Archives of Electrical Engineering, vol. 68, no. 4, pp. 737–747 (2019), DOI: 10.24425/aee.2019.130680.
  • [4] Teodorescu L.R., Blaabjerg F., Liserre M., Loh P.C., Proportional-resonant controllers and filters for grid-connected voltage-source converters, IEE Proceedings - Electrical Power Application, vol. 153, no. 5, pp. 750–762 (2006).
  • [5] De Donato G., Scelba G., Borocci G., Giulii Capponi F., Scarcella G., Fault-Decoupled Instantaneous Frequency and Phase Angle Estimation for Three-Phase Grid-Connected Inverters, Transactions of Power Electronics, vol. 31, no. 4, pp. 2880–2889 (2016), DOI: 10.1109/TPEL.2015.2445797.
  • [6] Xi Z., Zhao F., Zhao X., Peng H., Xi C., Research on islanding detection of solar distributed generation based on best wavelet packet and neural network, Archives of Electrical Engineering, vol. 68, no. 4, pp. 703–717 (2019), DOI: 10.24425/aee.2019.130678.
  • [7] Wang H., Fault diagnosis of analog circuit based on wavelet transform and neural network, Archives of Electrical Engineering, vol. 69, no. 1, pp. 175–185 (2020), DOI: 10.24425/aee.2020.131766.
  • [8] Ling L.I.U., Faulted feeder identification and location for a single line-to-ground fault in ungrounded distribution system based on principal frequency component, Archives of Electrical Engineering, vol. 69, no. 3, pp. 695–704 (2020), DOI: 10.24425/aee.2020.133926.
  • [9] IEEE, IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, IEEE Std 929–2000 (2000), DOI: 10.1109/IEEESTD.2000.91304.
  • [10] IEEE Standard, IEEE P1547. 2𝑇 𝑀 /D 7 Draft Application Guide for IEEE Std 1547, Standard for Interconnecting Distributed Resources with Electric Power Systems, no. March (2007), DOI: 10.1109/IEEESTD.2011.5960751
  • [11] IEEE Standard, IEEE Application Guide for IEEE Std 1547(TM), IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Std 1547.2-2008, no. April, pp. 1–217 (2009), DOI: 10.1109/IEEESTD.2008.4816078.
  • [12] Rymarski Z., Bernacki K., Dyga L., A Control for an Unbalanced 3-Phase Load in UPS Systems, Elektron. ir Elektrotechnika, vol. 24, no. 4 (2018), DOI: 10.5755/j01.eie.24.4.21474.
  • [13] Rodríguez P., Teodorescu R., Candela I., Timbus A.V., Liserre M., Blaabjerg F., New positive sequence voltage detector for grid synchronization of power converters under faulty grid conditions, PESC Record - IEEE Annual Power Electronics Specialists Conference, pp. 1–7 (2006), DOI: 10.1109/PESC.2006.1712059.
  • [14] Rodríguez P.Ç., Luna A.Ç., Ciobotaru M.Ë., Teodorescu R.Ë., Blaabjerg F.Ë., Advanced Grid Synchronization System for Power Converters under Unbalanced and Distorted Operating Conditions, Proc. 32nd Ann. Conf. IEEE Ind. Elect., (IECON), no. 2, pp. 5173–5178 (2006).
  • [15] Zeng J., Zhang Y., Research on optimal configuration of fault current limiter based on reliability in large power network, Archives of Electrical Engineering, vol. 69, no. 3, pp. 661–677 (2020), DOI: 10.24425/aee.2020.133924.
  • [16] Wenxin Yu., Shao Dao Huang, Dan Jiang, A fault monitoring method for wind power generation system based on sliding mode observer, Archives of Electrical Engineering, vol. 69, no. 3, pp. 625–643 (2020), DOI: 10.24425/aee.2020.133922.
  • [17] Zeng R., Xu L., Yao L., Finney S.J., Analysis and control of modular multilevel converters under asymmetric arm impedance conditions, IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 71–81 (2016), DOI: 10.1109/TIE.2015.2477057.
  • [18] Guo X., Liu W., Zhang X., Sun X., Lu Z., Guerrero J.M., Flexible control strategy for grid-connected inverter under unbalanced grid faults without PLL, IEEE Transactions of Power Electronics, vol. 30, no. 4, pp. 1773–1774 (2015), DOI: 10.1109/TPEL.2014.2344098.
  • [19] Zhang Y., Qu C., Table-Based Direct Power Control for Three-Phase AC/DC Converters under Unbalanced Grid Voltages, IEEE Transactions of Power Electronics, vol. 30, no. 12, pp. 7090–7099 (2015), DOI: 10.1109/TPEL.2014.2387694.
  • [20] Hirofumi Akagi, Watanabe E.H., Mauricio Aredes, Instantaneous Power Theory, Instantaneous Power Theory and Applications to Power Conditioning, 2nd ed., John Wiley & Sons, Inc., pp. 37–109 (2017).
  • [21] Tang L., Ooi B.T., Managing zero sequence in voltage source converter, Conf. Rec. Annu. Meet. IEEE Ind. Appl. Soc., vol. 2, pp. 795–802 (2002), DOI: 10.1109/IAS.2002.1042650.
  • [22] Montanari A.A., Gole A.M., Enhanced Instantaneous Power Theory for Control of Grid Connected Voltage Sourced Converters under Unbalanced Conditions, IEEE Transactions on Power Electronics, vol. 32, no. 8, pp. 6652–6660 (2017), DOI: 10.1109/TPEL.2016.2627049.
  • [23] Hadjidemetriou L., Kyriakides E., Blaabjerg F., Synchronization of grid-connected renewable energy sources under highly distorted voltages and unbalanced grid faults, IECON Proc. - Industrial Electron. Conf., pp. 1887–1892 (2013), DOI: 10.1109/IECON.2013.6699419.
  • [24] Hadjidemetriou L., Kyriakides E., Blaabjerg F., A Robust Synchronization to Enhance the Power Quality of Renewable Energy Systems, IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4858–4868 (2015), DOI: 10.1109/TIE.2015.2397871.
  • [25] Guo X., Wu W., Chen Z., Multiple-complex coefficient-filter-based phase-locked loop and synchronization technique for three-phase grid-interfaced converters in distributed utility networks, IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1194–1204 (2011), DOI: 10.1109/TIE.2010.2041738.
  • [26] Maurya G.K., Verma A.K., Subramanian C., Sharma B.B., Fixed-Frequency MCCF Based Grid Synchronization Technique, Proc. 2018 IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 2018, pp. 1–4 (2018), DOI: 10.1109/PEDES.2018.8707552.
  • [27] Shuvra M.A., Member S., Charlotte U.N.C., Selective Harmonic Compensation by Smart Inverters using Multiple-Complex-Coefficient-Filter (MCCF) during Unbalanced Fault Condition (2017).
  • [28] Kumar R., Sahu B., Shiva C.K., Rajender B., A control topology for frequency regulation capability in a grid integrated PV system, Archives of Electrical Engineering, vol. 69, no. 2, pp. 389–401 (2020), DOI: 10.24425/aee.2020.133033.
  • [29] Das J.C., Chapter 8. Effects of Harmonics, Power System Harmonics and Passive Filter Designs, New Jersey: John Wiley & Sons, pp. 331–378 (2015).
  • [30] Guo X., Guerrero J.M., Abc-frame complex-coefficient filter and controller based current harmonic elimination strategy for three-phase grid connected inverter, J. Mod. Power Syst. Clean Energy, vol. 4, no. 1, pp. 87–93 (2016), DOI: 10.1007/s40565-016-0189-4.
  • [31] Li Y., Yang R., Zhao X., Reactive power convex optimization of active distribution network based on Improved Grey Wolf Optimizer, Archives of Electrical Engineering, vol. 69, no. 1, pp. 117–131 (2020), DOI: 10.24425/aee.2020.131762.
  • [32] Ji L. et al., A Multi-objective Control Strategy for Three Phase Grid-Connected Inverter during Unbalanced Voltage Sag, IEEE Transactions of Power Delivery (2020), DOI: 10.1109/TPRD.2020.3025158.
  • [33] Rodríguez P., Pou J., Bergas J., Candela J.I., Burgos R.P., Boroyevich D., Decoupled double synchronous reference frame PLL for power converters control, IEEE Transactions of Power Electronics, vol. 22, no. 2, pp. 584–592 (2007), DOI: 10.1109/TPEL.2006.890000
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29da2dd2-2740-45a6-8f2d-6dec24e693f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.