PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Temperature Oxidation Process of P91 Steel in CO2 Atmosphere Containing SO2

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to improve the efficiency of power generation system and reduce CO2 emissions power plants work at high temperature and pressure. Under such conditions modified steel 9Cr, which fulfils the requirements concerning creep resistance, isused. However, Cr2O3 formed on the steel does not protect the construction material in the atmosphere which contains CO2 and SO2. The aim of the experiment was to study the behaviour of P91 steel in CO2 atmosphere with the addition of 1% and 5 vol.% of SO2 at different temperatures (700, 800 and 900°C). It was concluded that the corrosion rate of P91 steel is increasing with a rise in temperature. Scales formed in CO2 atmosphere at 900°C contain a mixture of iron oxides in the outer layer and chromium-iron spinel in the inner layer. The FeS and Ni were found in the inner zone of scales formed in SO2 atmosphere.
Słowa kluczowe
Twórcy
autor
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, 24 Warszawska Street, 31-155, Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, 24 Warszawska Street, 31-155, Cracow, Poland
Bibliografia
  • [1] C. P. O’Hagan, B. J. O’Brien, S. B. Leen, R.F.D. Monaghan, Corros. Sci. 109, 101-114 (2016).
  • [2] C. Mobbs, Guidelines/guidance by source category: Part III of Annex C, Victoria, Australia (2006).
  • [3] J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, W. J. Quadakkers, Corros. Sci. 48, 3428-3454 (2006).
  • [4] C. Pandey, A. Giri, M. M. Mahapatha, Materials Sciences & Engineering A 664, 58-74 (2016).
  • [5] T. Olszewski, Tag der mündlichen Prüfung: 15.08.2012.
  • [6] W. Schulz, M. Nofz, M. Feigl, I. Dorfel, R. Saliwan Neumann, A. Kranzmann, Corros. Sci. 68, 44-50 (2013).
  • [7] M. Homa, Instytut Odlewnictwa, Kraków 48, 4, 19-41 (2008).
  • [8] Y. Xiang, M. Xu, Y.-S. Choi, Corrosion Engineering, Science and Technology 52 (7), 485-509 (2017).
  • [9] A. Radziszewska, A. Kranzmann, I. Dörfel, M. Mosquera Feijoo, M. Solecka, Arch. Metall. Mater. 61, 1607-1612 (2016).
  • [10] Z. Grzesik, A. Poczekajło, A. Kaczmarska, S. Mrowec, Ochronna przed korozją 54 (6), 341-343 (2011).
  • [11] Z. Żurek, A. Jaroń, M. Homa, Oxid. Me. 76, 273-285 (2011).
  • [12] Z. Żurek, J. Gilewicz-Wolter, A. Jaroń, M. Homa, Ochronna przed korozją 54 (6) 330-332 (2011).
  • [13] Z. Żurek, J. Gilewicz-Wolter, M. Hetmańczyk, J. Dudała, Inżynieria materiałowa, 1 (138), Styczeń-Luty (2004).
  • [14] Z. Żurek, J. Gilewicz-Wolter, M. Hetmańczyk, J. Dudała, A. Stawiarski, Oxid. Met. 64 (5/6), 379-395 (2005).
  • [15] Y. Hua, R. Barker, A. Neville, Corrosion 71 (5), 667-683 (2015).
  • [16] K. Makowska, L. Piotrowski, Z. L. Kowalewski, J. Nondestruct. Eval. 36 (43), 10 (2017).
  • [17] M. Thirupathy, S. Z. Mazharuddin, S. Biswas, Int. J. Chem. Tech. Res. 7 (2), (2014).
  • [18] ThyssenKrupp Materials International. Material data sheet P91/T91 (2011).
  • [19] A. Alviz-Meza, J. A. Sanabria-Cala, V. Kafarov, D. Y. Pena-Ballesteros, Chemical Engineering Transactions 70, 1069-1074 (2018).
  • [20] L. L. Shreir, R. A. Jarman, G. T. Burstein, Corrosion 1, Metal/Environment reactions. Butterworth-Heinemann 2000.
  • [21] P. Huczkowski, T. Olszewski, M. Schiek, B. Lutz, G. R. Holcomb, V. Shemet, W. Nowak, G. H. Meier, L. Singheiser, W. J. Quadakkers, Materials and Corrosion 65 (2), 121-130 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29da27a6-eda3-457a-9734-d6483a9a6851
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.