PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon footprint assessment of surgical masks and KN95 respirator masks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to investigate the carbon footprint and greenhouse gas emission sources of five typical mask products, including surgical masks and four KN95-grade masks differing in design, from the stage of raw material acquisition to the storage of the mask products. The results show that, for the production of 1000 masks, the carbon footprint of KN95 masks is more than three times larger than that of surgical masks. The carbon footprint of mask raw material production is much larger than that of mask production, with the ear loops being the main contributor to the carbon footprint. The use of each exhalation valve increases the carbon footprint of the mask by approximately 28.14%. In the mask production stage, the carbon footprint of the mask body production process is relatively high. Factors such as equipment mechanism drive, ultrasonic welding, and mask thickness affect the carbon footprint of mask production. Generally, equipment mechanism drive is the largest influencing factor in the carbon footprint of mask production.
Rocznik
Strony
49--58
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
autor
  • Jiande Chaomei Daily Chemical Co., Ltd., Hangzhou, Zhejiang 311603, China
autor
  • Jiande Chaomei Daily Chemical Co., Ltd., Hangzhou, Zhejiang 311603, China
autor
  • Zhejiang Institute of Quality Sciences, Hangzhou, Zhejiang 310018, China
autor
  • Hubei Fiber Inspection Bureau, Wuhan, Hubei 430064, China
autor
  • School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Research Center of Digital Intelligence Style and Creative Design, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Green and Low-Carbon Technology and Industrialization of Modern Logistics, Zhejiang Engineering Research Center, Yongjia, Zhejiang 325103, China
Bibliografia
  • 1. Howard J., Huang A., Li Z., Tufekci Z., Zdimal V., Van Der Westhuizen H.M., Von Delft A., Price A., Fridman L., Tang L.H., Tang V., Watson GL., Bax C.E., Shaikh R., Questier F., Hernandez D., Chu L.F., Ramirez C.M., Rimoin A.W. An Evidence Review of Face Masks Against COVID-19. Proceedings of the National Academy of Sciences 2020; 118(4): e2014564118.
  • 2. Ajaj R., Dweik R.A., Ali S.A.S., Stietiya M.H. Life Cycle Assessment Studies to Evaluate the Sustainability of Various Facemasks Used During COVID-19: A UAE Case Study. Journal of Environmental Chemical Engineering 2023; 11(5): 110491.
  • 3. The State Council Information Office of the People’s Republic of China. Fighting COVID-19 China in Action, 2020, https://www.gov.cn/zhengce/2020-06/07/content_5517737.htm (accessed on 19 May 2024).
  • 4. Akarsu C., Madenli Ö., Deveci E.Ü. Characterization of Littered Face Masks in the Southeastern Part of Turkey. Environmental Science and Pollution Research 2021; 28(34): 47517-47527.
  • 5. Shen M., Zeng Z., Song B., Yi H., Hu T., Zhang Y., Zeng G., Xiao R. Neglected Microplastics Pollution in Global COVID-19: Disposable Surgical Masks. Science of the Total Environment 2021; 790: 148130.
  • 6. Chua M.H., Cheng W., Goh S.S., Kong J., Li B., Lim J.Y.C., Mao L., Wang S., Xue K., Yang L., Ye E., Zhang K., Cheong W.C.D., Tan B.H., Li Z., Tan B.H., Loh X.J. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research 2020; 2020: 7286735.
  • 7. Lyu L., Peng H., An C.J., Sun H., Yang X., Bi H. An Insight into the Benefits of Substituting Polypropylene with Biodegradable Polylactic Acid Face Masks for Combating Environmental Emissions. Science of the Total Environment 2023; 905: 167137.
  • 8. Priya A., Dutta K., Daverey A. A Comprehensive Biotechnological and Molecular Insight into Plastic Degradation by Microbial Community. Journal of Chemical Technology & Biotechnology 2022; 97(2): 381-390.
  • 9. Shanmugam V., Babu K., Garrison T.F., Capezza A.J., Olsson R.T., Ramakrishna S., Hedenqvist M.S., Singha S., Bartoli M., Giorcelli M., Sas G., Försth M., Das O., Restás Á., Berto F. Potential Natural Polymer-Based Nanofibres for the Development of Facemasks in Countering Viral Outbreaks. Journal of Applied Polymer Science 2021; 138(27): 50658.
  • 10. Liu Y.J., Zhang J.S., Situ Y.S. Spunbond and Meltblown Nonwoven Fabric Handbook. China Textile & Apparel Press, 2014.
  • 11. Situ Y.S., Li Z.H. Meltblown Nonwoven Technology. China Textile & Apparel Press, 2022.
  • 12. Zheng J., Suh S. Strategies to Reduce the Global Carbon Footprint of Plastics. Nature Climate Change 2019; 9(5): 374-378.
  • 13. Liang H., Huang Q.W. Analysis of the Impact of Disposable Masks on the Natural Environment. Popular Standardization 2022; (24): 104-106.
  • 14. Wiedmann T., Minx J. A Definition of ‘Carbon Footprint’. Ecological Economics Research Trends 2008; 1-11.
  • 15. Do Thi H.T., Mizsey P., Toth A.J. Applicability of Membranes in Protective Face Masks and Comparison of Reusable and Disposable Face Masks with Life Cycle Assessment. Sustainability 2021; 13(22): 12574.
  • 16. Van Straten B., Ligtelijn S., Droog L., Putman E., Dankelman J., Sperna Weiland N.H., Horeman T. A Life Cycle Assessment of Reprocessing Face Masks During the COVID-19 Pandemic. Scientific Reports 2021; 11(1): 17680.
  • 17. Angelis-Dimakis A., Whitehouse A., Vyrkou A., Hebden A., Rana S., Goswami P. Life Cycle Environmental Impact and Economic Assessment of British Wool Face Masks. Cleaner Environmental Systems 2022; 6: 100084.
  • 18. Li Y., Tang Y., Liu M., Yuan X., Zuo J., Feng K., Wang Q., Ma Q., Mu R., Wang W., Hong J. Life-Cycle Assessment Reveals Disposable Surgical Masks in 2020-2022 Led to More Than 18 million Tons of Carbon Emissions. One Earth 2023; 6(9): 1258-1268.
  • 19. Zuo S.Y., Chen Y.H., Zeng C., Wu A.H., Ren N., Huang X. Application Scope and Relevant Standards of Masks in Various Countries. Chinese Journal of Infection Control 2020; 19(2): 109-116.
  • 20. International Organization for Standardization. ISO 14067: 2018 Greenhouse Gases-Carbon Footprint of Products-Requirements and Guidelines for Quantification. ISO, Geneva, Switzerland, 2018.
  • 21. The Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis, in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, 2013.
  • 22. Luo Y., Yu M., Wu X., Ding X., Wang L. Carbon Footprint Assessment of Face Masks in the Context of the COVID-19 Pandemic: Based on Different Protective Performance and Applicable Scenarios. Journal of Cleaner Production 2023; 387: 135854.
  • 23. Shao Z.Y., Liu L. Comparative Evaluation of Stocking Products Based on Product Life Cycle Assessment. IOP Conference Series: Earth and Environmental Science 2021; 680(1): 012033.
  • 24. Yang S. Study on the Calculation of Carbon Emission in the Whole Life Cycle of Building Steel Structure Engineering. Shandong Jianzhu University, 2023.
  • 25. Vilén A. Environmental Impact of Activated Carbon Production from Various Raw Materials. Master’s Programme in Water and Environmental Engineering 2021; 104+32.
  • 26. Xin C.L., Zhang Y.M., Jiang B.W., Li Y., Liu S.X., Han D.L., Qi X.Z. Comparative Study of the Life-Cycle Environmental Impact of All Carbon Black/Silica Tires. Journal of Beijing University of Chemical Technology (Natural Science) 2023; 50(4): 98-106.
  • 27. Zhao G.J., You Y.J., Huang Q.S. Carbon Footprint Assessment Method of Corrugated Medium on Life Cycle Assessment. China Pulp & Paper 2021; 40(8): 40-44.
  • 28. Shen L., Worrell E., Patel M.K. Environmental Impact Assessment of Man-made Cellulose Fibres. Resources, Conservation and Recycling 2010; 55(2): 260-274.
  • 29. Muka I., Huba A. The Comparison of Solid Silicone Rubber Types Manufactured by Diverse Technologies. Materials Science Forum 2008; 589: 123-129.
  • 30. Yu M.F. Study on Environmental Impact of Epidemic Prevention Mask Based on Life Cycle Assessment. Donghau University, 2022.
  • 31. Lee A.W.L., Neo E.R.K., Khoo Z.Y., Yeo Z., Tan Y.S., Chng S., Yan W., Lok B.K., Low J.S.C. Life Cycle Assessment of Single-Use Surgical and Embedded Filtration Layer (EFL) Reusable Face Mask. Resources, Conservation and Recycling 2021; 170: 105580.
  • 32. Atılgan Türkmen B. Life Cycle Environmental Impacts of Disposable Medical Masks. Environmental Science and Pollution Research 2022; 29: 25496- 25506.
  • 33. Özbek M.O., Van Santen R.A. The Mechanism of Ethylene Epoxidation Catalysis. Catalysis letters 2013; 143: 131-141.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29da1b44-7afc-449a-b936-3226a067caa1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.