Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new discrete time-reversible map of a unit square onto itself is proposed. The map comprises of piecewise linear two-dimensional operations, and is able to represent the macroscopic features of both equilibrium and nonequilibrium dynamical systems. Our operations are analogous to sinusoidally driven shear in the two dimensions, and a radial compression/ expansion of a point lying outside/inside a circle centred around origin. Depending upon the radius, the map transitions from being ergodic and non-dissipative (like in equilibrium situations) to a limit cycle through intermediate multifractal situations (like in nonequilibrium situations). All dissipative cases of the proposed map suggest that the Kaplan-Yorke dimension is smaller than the embedding dimension, a feature typically arising in nonequilibrium steady-states. The proposed map differs from the existing maps like the Baker map and Arnold’s cat map in the sense that (i) it is reversible, and (ii) it generates an intricate multifractal phase-space portrait.
Słowa kluczowe
Rocznik
Tom
Strony
61--70
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Advanced Technology Development Center Indian Institute of Technology Kharagpur, West Bengal, India 721302
Bibliografia
- [1] Wm.G. Hoover and C.G. Hoover, Time reversibility, computer simulation, algorithms, chaos, World Scientific, 2012.
- [2] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics 81(1), 511-519 (1984).
- [3] Wm.G. Hoover, Canonical dynamics: Equilibrium phasespace distributions, Physical Review A 31(3), 1695-1697 (1985).
- [4] Wm.G. Hoover and B.L. Holian, Kinetic moments method for the canonical ensemble distribution, Physics Letters A 211(5), 253-257 (1996).
- [5] G.J. Martyna, M.L. Klein, and M. Tuckerman, Nosé-Hoover chains: The canonical ensemble via continuous dynamics, The Journal of Chemical Physics 97(4), 2635-2643 (1992).
- [6] P. K. Patra and B. Bhattacharya, A deterministic thermostat for controlling temperature using all degrees of freedom, The Journal of Chemical Physics 140(6), 064106 (2014).
- [7] P.K. Patra and B. Bhattacharya, An ergodic configurational thermostat using selective control of higher order temperatures, The Journal of Chemical Physics 142(19), 194103 (2015).
- [8] Wm.G. Hoover, O. Kum, and H.A. Posch, Time-reversible dissipative ergodic maps, Physical Review E 53(3), 2123 (1996).
- [9] D.J. Evans and G. Morriss, Statistical mechanics of nonequilibrium liquids, Cambridge University Press, 2008.
- [10] P.K. Patra and B. Bhattacharya, Nonergodicity of the Nose-Hoover chain thermostat in computationally achievable time, Physical Review E 90(4), 043304 (2014).
- [11] P.K. Patra, J.C. Sprott, Wm.G. Hoover, and C.G. Hoover, Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics, Molecular Physics 113(17-18), 2863-2872 (2015).
- [12] H.A. Posch and Wm.G. Hoover, Time-reversible dissipative attractors in three and four phase-space dimensions, Physical Review E 55(6), 6803 (1997).
- [13] P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, In The Theory of Chaotic Attractors, pages 170-189 Springer, 2004.
- [14] Wm.G. Hoover and C.G. Hoover, Time-symmetry breaking in Hamiltonian mechanics, arXiv preprint arXiv:1302.2533 (2013).
- [15] Wm.G. Hoover, J.C. Sprott, and P.K. Patra, Ergodic Time-Reversible Chaos for Gibbs’ Canonical Oscillator, arXiv preprint arXiv:1503.06749 (2015).
- [16] O.B. Isaeva, A.Y. Jalnine, and S.P. Kuznetsov, Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators, Phys. Rev. E, 74, 046207 (2006).
- [17] Wm.G. Hoover and C.G. Hoover, Simulation and Control of Chaotic Nonequilibrium Systems, Advanced series in nonlinear dynamics World Scientific, 2015.
- [18] L. Rondoni and G.P. Morriss, Stationary nonequilibrium ensembles for thermostated systems, Phys. Rev. E, 53, 2143-2153 (1996).
- [19] Wm.G. Hoover and C.G. Hoover, Time-Reversible Ergodic Maps and the 2015 Ian Snook Prize, arXiv preprint arXiv:1507.01645 (2015).
- [20] T. Riley, A. Goucher, Beautiful Testing: Leading Professionals Reveal How They Improve Software, O’Reilly Media, Inc.,2009.
- [21] G. Marsaglia, DIEHARD: a battery of tests of randomness, See http://stat.fsu.edu/~geo/diehard.html (1996).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29d46c92-b821-4329-982d-12e58fd8244b