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Abstract 
In the article the problem of assurance of qualitative capability of the preparation process of casting moulds using artificial neural net-

works is presented. Using STATISTICA Neural Networks a set of the best networks is found. Obtained results of neural modeling were 

compared with the results of experimental investigations and classical mathematical modeling. The appropriate architecture of the neural 

network is chosen that predicts the quality capability of the preparation process of casting moulds with the high precision. 
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1. Introduction 
 

Modern industrial robots are very universal. They were ap-

plied with success in so different areas, such as welding, paint-

ing, assembling and casting [1].  

In general, the robots working in the foundry are not charac-

terized by high accuracy. An exception, however, is the process 

of placing of the inserts flooded into a form. In this case, the 

robot must be sufficiently precise to be able to orient properly 

and place the insert. An important problem of such robotized 

casting areas is the problem of ensuring the required level of 

reliability that can be achieved through the assurance of appro-

priate values of the qualitative ability index [2, 3]. In the case of 

the process of placing steel inserts into the casting mould, the 

study is based on relation of errors generated by the robot (linear 

and/or angular) to the tolerance range of displacement or torsion 

of inserts axes [4]. 

The study of qualitative capability of the process of steel in-

serts placing inside the casting mould is very complicated and 

labour-consuming [5, 6]. Classical methods for determining the 

values of qualitative capability indexes require modeling the 

total error of the robot as the density function of a random vari-

able subjected to the normal probability distribution. However, 

these models are appropriate if the robot operates in stable 

operating environment. Then the values of the model error do 

not exceed 9%. However, the values of the model error increase 

when the environmental conditions are not stable. This occurs 

precisely in the case of foundry processes where not only a 

burden but mainly robot operating temperature may be altered. 

The change in a temperature and associated with it both linear 

and volume expansion affect not only the value of the repeata-

bility positioning error of a robot, but also the density function 

of the probability distribution. Thus, models assuming conform-

ity of resultant error distribution with a normal distribution are 

affected by the significant error (sometimes over 10% ), which 

is also reflected in the estimation of qualitative capacity of the 

casting area as well as the whole process for the preparation of 

casting moulds [7]. 
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Determination of component of repeatability positioning er-

ror associated with thermal expansion is a labour-consuming 

task because it requires taking into account many parameters. 

This additionally complicates the mathematical models aimed at 

determining robot’s error and the ability of the qualitative capa-

bility of casting area and results in decreasing of their accuracy. 

An alternative solution to the presented problem may be the use 

of artificial neural networks, which do not require the modeling 

of component errors, because they are based mainly on the 

results of experimental tests. Therefore, this work attempts to 

develop a numerical model using an artificial neural network to 

predict the level of mountability of casting area.  

 

2. Neural model 
 

An artificial neural network (ANN) is a powerful data mod-

eling tool that is able to build and analyze complex input/output 

relationships. The motivation for the development of ANN 

technology stemmed from the desire to develop a neural system 

that could perform intelligent tasks similar to those performed 

by the human brain [8]. The advantage of neural networks lies 

in their ability to represent non-linear relationships and in their 

ability to learn these relationships directly from the learning 

data. 

Considering the possibility to include in the modeling pro-

cess many factors, neural networks offer the opportunity to 

build a model which is able to forecast the qualitative ability of 

casting area with high accuracy. However, this requires the 

collecting learning data and the selection of the input feature 

vector as well as configuration of the neural network. Data for 

the ANN analysis were obtained from experimental studies 

conducted on the robotic assembly stand equipped with 

Mitsubishi RV-M2 industrial robot. The experimental study 

consists of measuring the error in the different points of robot's 

space, at a different ambient temperature (1020°C). Based on 

the results of measurements the value of qualitative ability index 

of inserts placement process was determined using the following 

equations: 

- for inserts with flat surfaces (Figure 1) [10]: 
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- for cylindrical inserts (Figure 2) [9]: 
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where:  

TΔl - the tolerance of relative linear displacement of axes of 

joined parts, 

σmax(x,y) - the maximal value of standard deviation of relative 

error of joined parts displacement, 

USLi, LSLi – upper and lower tolerance range, 

USLi, LSLi – upper and lower border of modified process space  

One of the main tasks necessary to build the optimal model 

of neural network is the selection of sufficient input variables 

that essentially influence the output variable value. Too large 

number of variables may cause noisy data whereas not taking 

into account even a single variable that essentially influences the 

output variable may lead to wrong results. Further, adding more 

input network results in excessive expansion of the network 

architecture and at the same time the value of training data is 

increased. In turn, omission of essential variables in input can 

cause decreasing quality of the network. This indicates that 

there are no universal criteria to select architecture of ANN [8 

11]. The neural network architecture except both input and 

output layers includes one or more hidden layers [12]. The 

multilayer networks named multilayer perceptrons (MLP) are 

mostly utilized. 
 

 
Fig. 2. Rectangular tolerance region versus modified process 

region [10] 
 

         
 

Fig. 2. The methodology of capability index MCp determination 

according to Cheen [9] 

 

To determine weighted sum and threshold activation value 

of separated neurons it is necessary to prepare the training data 

set consisting of input signals and the corresponding values of 

output signals. In this study, the following input sets of variables 

were assigned as input signals: 

- values of joint coordinates of industrial robot determining the 

place of assembly operation in space of casting area, 

- value of tolerance of relative displacement of joined parts 

axes,  

- ambient temperature value.  
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The expected signal at the output was the value of the prob-

ability of a correct realization of the assembly operation.  (2) 

As the prediction model the ANN with six neurons in the 

input layer, and one neuron in the output layer is utilized (Figure 

3). Using STATISTICA Neural Networks the set of the best 

network for the placement process of inserts with both cylindri-

cal and flat surfaces was built. Among all experimental sets of 

input data that correspond with the output signal, 20% were 

separated and assigned as the test set. Data vectors from a test 

set did not participate in the training process and served for 

ANN prognostic evaluation purpose only. From the remaining 

set of experimental data belonging to training set, 10% was 

separated and assigned as validation set. Data from this group 

were used for independent check of training algorithm. 
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Fig. 3. Architecture of neural network 

 

3. Training the ANN 
 

After determining the number of layers and number of neu-

rons in each layer the weight values and threshold values of all 

the neurons were determined. This was realized by the training 

algorithm that minimizes the error of the network working . The 

ANN training was performed with the back propagation algo-

rithm. As a criterion of the network quality the value of the 

mean square error RMS  [8] determined separately for different 

subsets of data is assumed. 

To avoid overlearning process of ANN as a criterion for the 

stopping of the learning process was assumed the moment when 

there is no further decrease in the value of the RMS error of the 

validation set (Figure 4). The value of learning coefficient  

which is a parameter corresponding to the stability and rate of 

convergence of the learning algorithm is taken as 0.0001 [10-

12]. The value of learning coefficient was the same for all the 

tested networks 

 
 

Fig. 4. Value of RMS error during training of network SSN1 

 

 4. Results of ANN prediction  

 
To estimate the network model one should pay particular at-

tention to the value of SD Ratio (SDR) and the value of R-

Pearson correlation coefficient [8]. For a very good ANN model 

the value of ratio of the standard deviation is less than 0.1. The 

high value of R-Pearson correlation coefficient and simultane-

ously the low value of SDR for the validation set testify a very 

good quality of the network. Testing the prediction of neural 

networks was conducted on the basis of four sets of input data. 

For these sets, based on the results of measurements, the values 

of capability index MCp were calculated. A comparison of the 

both results of neural networks, experimental studies and the 

results obtained based on mathematical modeling [4] are shown 

in Tables 1 and 2. 

Table 1.  

Comparison of prediction of MCp index between artificial neural networks and results of mathematical 

model for inserts with cylindrical surfaces 

NOE* 
Value of input parameters MCp index value 

q1, rad q2, rad q3, rad q4, rad TΔl, mm T, °C Eks. SSN1 Model 

10 0.5236 1.2217 1.3962 1.3962 0.046 16 0.3183 0.3052 0.3283 

18 0.5236 0.1745 0.8723 0.8726 0.062 20 0.4740 0.4620 0.5000 

24 0.4363 0.5235 0.6981 1.3962 0.104 25 0.9331 0.8997 1.0007 

31 0.6981 0.8726 0.8726 1.5707 0.140 27 1.3565 1.3458 1.4220 

* - number of observation error 
  

Table 2.  

Comparison of prediction of MCp index between artificial neural networks and results of mathematical 

model for inserts with flat surfaces 

NOE* 

Value of input parameters MCp index value 

q1, rad q2, rad q3, rad q4, rad 
Tregion, 
mm 

T, °C Exp. SSN1 Model 

10 0.5236 1.2217 1.3962 1.3962 0.002116 16 0.3838 0.3901 0.3908 

18 0.5236 0.1745 0.8723 0.8726 0.003844 20 0.5749 0.5620 0.6115 

24 0.4363 0.5235 0.6981 1.3962 0.01080 25 1.1465 1.1574 1.1953 

31 0.6981 0.8726 0.8726 1.5707 0.0196 27 1.6044 1.5769 1.6942 
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If we assume the RMS error value as the conformity criterion 

of modeling results with the results of experimental studies, for 

inserts with both cylindrical (Figure 5) and flat (Figure 6) surfac-

es, better predicting properties revealed the artificial neural net-

works.  
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Fig. 5. Comparison of prediction errors values of MCp index 

between artificial neural networks and results of mathematical 

model for inserts with cylindrical surfaces 
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Fig. 6. Comparison of prediction errors value of MCp index be-

tween artificial neural networks and results of mathematical mod-

el for inserts with flat surfaces 

 

For the network predicted MCp index value for the process of 

placing of steel inserts the value of RMS errors amounted to 0.039 

and 0.0379 for inserts with cylindrical and flat surfaces, respec-

tively. RMS error value for the classical mathematical model in 

both the first and the second case was  nearly three times higher 

and amounted to 0.108 and 0.098. Also, the average error of 

prediction for the model using neural networks (2.15% and 

2.43%) was much smaller than for the classical models (4.51% 

and 5.17%). 

 

Summary 
 
The results of the study on the use of artificial neural net-

works to predict the qualitative ability of a process of preparing 

the casting molds show excellent agreement between experi-

mental data and outcomes of neuron models.  As a result of nu-

merical experiments the neural structure which correctly predicts 

the probability of a part joint in robotic assembly station was 

selected.  

The average prediction error for the neural network models 

(2.15% and 2.43%) was more than half less than in the case of 

classical mathematical models (4.51% and 5.17%). 

Despite the many advantages of neural network it also has 

limitations. In presented case there is the necessity for a very 

labor-consuming experimental studies aimed at the determination 

of qualitative capacity index of the process of inserts placing at 

many points in the workspace of casting area. These data are 

necessary for the training the neural network correctly. Thus, 

considering this aspect, it seems that in industrial environments 

more often can be used the classic method of mathematical mod-

eling. The results are burdened with admittedly larger error value, 

but due to the fact that the analysis uses the information about the 

kinematic structure of assembly robot, requires much less labor 

consumption when estimating the qualitative ability of the pro-

cess. 
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