PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Distribution and q-Variation of the Solution to the Heat Equation with Fractional Laplacian

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the probability distribution of the solution to the linear stochastic heat equation with fractional Laplacian and white noise in time and white or correlated noise in space. As an application, we deduce the behavior of the q-variations of the solution in time and in space.
Rocznik
Strony
315--335
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Laboratoire Paul Painlevé, CNRS UMR 8524, Université de Lille, 59655 Villeneuve d’Ascq, France
autor
  • Laboratoire Paul Painlevé, CNRS UMR 8524, Université de Lille, 59655 Villeneuve d’Ascq, France
Bibliografia
  • [1] P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math. 59 (3) (1999), pp. 845-869.
  • [2] P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (3) (1983), pp. 425-441.
  • [3] R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1) (1979), pp. 27-52.
  • [4] M. Foondun, D. Khoshnevisan, and P. Mahboubi, Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion, Stoch. Partial Differ. Equ. Anal. Comput. 3 (2) (2015), pp. 133-158.
  • [5] M. Foondun, J. B. Mijena, and E. Nane, Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains, Fract. Calc. Appl. Anal. 19 (6) (2016), pp. 1527-1553.
  • [6] L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate, Probab. Theory Related Fields 86 (1) (1990), pp. 87-104.
  • [7] D. Harnett and D. Nualart, Decomposition and limit theorems for a class of self-similar Gaussian processes, in: Stochastic Analysis and Related Topics: A Festschrift in Honor of Rodrigo Bañuelos, F. Baudoin and J. Peterson (Eds.), Springer International Publishing, Cham 2017, pp. 99-116.
  • [8] E. Herbin, From N parameter fractional Brownian motions to N parameter multifractional Brownian motions, Rocky Mountain J. Math. 36 (4) (2006), pp. 1249-1284.
  • [9] C. Houdré and J. Villa, An example of infinite dimensional quasi-helix, in: Stochastic Models, Contemp. Math. 336 (2003), pp. 195-201.
  • [10] N. Jacob and H. Leopold, Pseudo-differential operators with variable order of differentiation generating Feller semigroups, Integral Equations Operator Theory 17 (4) (1993), pp. 544-553.
  • [11] N. Jacob, A. Potrykus, and J. Wu, Solving a non-linear stochastic pseudo-differential equation of Burgers type, Stochastic Process. Appl. 120 (12) (2010), pp. 2447-2467.
  • [12] Y. Jiang, K. Shi, and Y. Wang, Stochastic fractional Anderson models with fractional noises, Chin. Ann. Math. Ser. B 31 (1) (2010), pp. 101-118.
  • [13] D. Khoshnevisan, Multiparameter Processes: An Introduction to Random Fields, Springer, New York 2002.
  • [14] P. Lei and D. Nualart, A decomposition of the bifractional Brownian motion and some applications, Statist. Probab. Lett. 79 (5) (2009), pp. 619-624.
  • [15] T. Lindstrøm, Fractional Brownian fields as integrals of white noise, Bull. Lond. Math. Soc. 25 (1) (1993), pp. 83-88.
  • [16] W. Liu, K. Tian, and M. Foondun, On some properties of a class of fractional stochastic heat equations, J. Theoret. Probab. 30 (4) (2017), pp. 1310-1333.
  • [17] M. M. Meerschaert, E. Nane, and Y. Xiao, Fractal dimension results for continuous time random walks, Statist. Probab. Lett. 83 (4) (2013), pp. 1083-1093.
  • [18] I. Nourdin, D. Nualart, and C. A. Tudor, Central and non-central limit theorems for weighted power variations of fractional Brownian motion, Ann. Inst. Henri Poincaré Probab. Stat. 46 (4) (2010), pp. 1055-1079.
  • [19] D. Nualart, The Malliavin Calculus and Related Topics, second edition, Springer, Berlin 2006.
  • [20] J. Pospisil and R. Tribe, Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise, Stoch. Anal. Appl. 25 (3) (2007), pp. 593-611.
  • [21] J. Swanson, Variations of the solution to a stochastic heat equation, Ann. Probab. 35 (6) (2007), pp. 2122-2159.
  • [22] A. Truman and J. Wu, On a stochastic nonlinear equation arising from 1D integro-differential scalar conservation laws, J. Funct. Anal. 238 (2) (2006), pp. 612-635.
  • [23] C. A. Tudor, Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach, Springer, Cham 2013.
  • [24] C. A. Tudor and Y. Xiao, Sample paths of the solution to the fractional-colored stochastic heat equation, Stoch. Dyn. 17 (1) (2017), 1750004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29ce665c-2a0a-4be3-8a12-e02f605f731e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.