PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic Model and PD Control with Forces Compensation of Dual-Stage Gough-Stewart Platform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates a dual-stage Gough-Stewart platform. The lower platform is responsible for simulating the oscillations of moving vehicles such as cars, ships, and airplanes. The upper platform is connected to devices that require either balance stabilization or motion stabilization according to specific requirements. The dynamic model of the robot system is derived in a general form based on the Lagrange equations of motion with Lagrange multipliers. Using these equations in a compact form, a PD controller with forces compensation in task space is designed for the robot system. Oscillation generation and balance stabilization are computed and simulated using the kinematic and dynamic parameters of two Bosch Rexroth robots. The computation and simulation results demonstrate the dynamic model's accuracy and the controller's effectiveness.
Rocznik
Strony
75--92
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Department of Mechatronics, School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi Viet Nam
  • Department of Mechatronics, Faculty of Aerospace Engineering, Le Quy Don Technical University, Viet Nam
autor
  • Department of Mechatronics, Faculty of Aerospace Engineering, Le Quy Don Technical University, Viet Nam
  • Department of Mechatronics, Faculty of Aerospace Engineering, Le Quy Don Technical University, Viet Nam
  • Department of Mechatronics, Faculty of Aerospace Engineering, Le Quy Don Technical University, Viet Nam
autor
  • Faculty of Industrial & Systems engineering, Hanoi University of Industry, Viet Nam
Bibliografia
  • [1] STEWART D., 1965, A platform with six degrees of freedom, Proceedings of the UK Institute of Mechanical Engineering, 180/1, 371–386.
  • [2] PHAM H.T., NGUYEN V.K., DANG Q.K., DUONG T.V.A., NGUYEN D.T., PHAN T.V., 2023, Design Optimization of Compliant Mechanisms for Vibration Assisted Machining Applications Using a Hybrid Six Sigma, RSM-FEM, and NSGA-II approach, Journal of Machine Engineering, 23/2, 135–158 https://doi.org/10.36897 /jme/166500
  • [3] Ampelmann projects, https://www.ampelmann.nl/
  • [4] NGUYEN T.S., HOANG Q.C., NGUYEN D.Q., 2017, Investigation on Offshore Access Stabilization Systems-Simulation Using the Blockset SimMechanics in Matlab/Simulink, J. of Science and Technique, Le Quy Don Technical University, 183, 88–100.
  • [5] MARQUES F., et al, 2021, Examination and Comparison of Different Methods To Model Closed Loop Kinematic Chains Using Lagrangian Formulation with Cut Joint, Clearance Joint Constraint and Elastic Joint Approaches, Mechanism and Machine Theory, 160, 104294.
  • [6] STAICU S., 2011, Dynamics of the 6-6 Stewart Parallel Manipulator, Robotics and Computer Integrated Manufacturing, 27/1, 212–220.
  • [7] ABDELLATIF H., HEIMANN B., 2009, Computational Efficient Inverse Dynamics of 6-DOF Fully Parallel Manipulators by Using the Lagrangian Formalism, Mechanism and Machine Theory, 44, 192–207.
  • [8] YANG C., HAN J., PETER O.O., HUANG Q., 2011, PID Control with Gravity Compensation for Hydraulic 6-DOF Parallel Manipulator, PID Control, Implementation and Tuning, https://doi.org/10.5772/16023.
  • [9] CAI Y., et al, 2020, Model Analysis and Modified Control Method of Ship-Mounted Stewart Platforms for Wave Compensation, IEEE Access, 9, 4505–4517.
  • [10] TUMELERO V.V., PERONDI E.A., 2017, Control of an Electrohydraulic Stewart Platform Manipulator for Off-Shore Motion Compensation, Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering.
  • [11] Tourajizadeh, Hami, and S. Manteghi, 2016, Design and optimal control of dual-stage Stewart platform using Feedback-Linearized Quadratic Regulator, Advanced Robotics 30.20: 1305-1321.
  • [12] PHAN B.K., 2010, Algorithm and Program for Dynamics Calculation of Parallel Robots, Journal of Science and Technology, 48/1, 33–44.
  • [13] PHAN B.K., 2005, Investigation Inverse Kinematics of Parallel Mechanisms in Series Connection, Proceedings 5th Asian symposium on Applied Electromagnatics and Mechanics, Hanoi, Vietnam, 224-231, (In Vietnamese).
  • [14] PHAN B.K., HA H.H., HOANG Q.C., 2024, Algorithm and Program for Computing The Kinematics of a Two-Stage Parallel Robot, Proceedings of the National Mechanics Conference, 2, 705–714, (In Vietnamese).
  • [15] VLASE S, 1987, A Method of Eliminating Lagrangian Multipliers from the Equation of Motion of Interconnected Mechanical Systems, Journal of Applied Mechanics, March 1987, 235–237, https://doi.org/10.1115/1.3172969.
  • [16] SCIAVICCO L., BRUNO S., 2012, Modelling and Control of Robot Manipulators, Springer Science & Business Media.
  • [17] KHALIL W., ETIENNE D., 2004, Modeling, Identification and Control Of Robots, Butterworth-Heinemann.
  • [18] UHLMANN E., POLTE M., BLUMBERG J., 2023, Estimation of External Force-Torque Vector Based on Double Encoders of Industrial Robots Using a Hybrid Gaussian Process Regression and Joint Stiffness Model, Journal of Machine Engineering, 23/3, 36–68, https://doi.org/10.36897/jme/167359.
  • [19] Ha H.H., Hoang Q,C., at al, 2022, Simulation of Vessel Oscillation Using Parallel Robot, Journal of Military Science and Technology, 80, June 2022, 156–67, doi:10.54939/1859-1043.j.mst.80.2022.156-167 (In Vietna mese).
  • [20] https://github.com/LINK-SIC-2021-Bernat-Granstrom/ship-simulator.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29c9849f-0839-4537-a20f-27f399ecf9f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.