PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Sintering Temperature on the Microstructure of Coal-Ash Based Geopolymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, one of the main challenges of civil engineering and science materials engineers is to develop a sustainable substitute for Ordinary Portland Cement. While the most promising solution is provided by the geopolymerisation technology, most of the studied geopolymers are based on natural raw materials (kaolin). The metakaolin is mainly preferred because of its rapid rate of dissolution in the activator solution, easy control of the Si/Al ratio, and white color. However, its high cost prevents it from being widely used in geopolymer composites or other materials that can become an industrial alternative for Ordinary Portland Cement. Several studies have shown that geopolymers with good performance can also be obtained from secondary raw materials (industrial wastes such as coal ash or slag). This explains why countries with rapidly developing economies are so interested in this technology. These countries have significant amounts of industrial waste and lack a well-developed recycling infrastructure. Therefore, the use of these by-products for geopolymers manufacturing could solve a waste problem while simultaneously lowering virgin raw material consumption. This study evaluates the effect of replacing different amounts of coal ash with sand on the microstructure of sintered geopolymers. Accordingly, scanning electron microscopy and energy dispersive X-ray analysis were involved to highlight the morphological particularities of room-cured and sintered geopolymers.
Twórcy
  • Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 41, 700050 Iasi, Romania
  • Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 41, 700050 Iasi, Romania
  • Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
  • Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 41, 700050 Iasi, Romania
  • Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 41, 700050 Iasi, Romania
  • Romanian Inventors Forum, St. P. Movila 3, 700089 Iasi, Romania
  • Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 41, 700050 Iasi, Romania
  • Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Arau 02600, Perlis, Malaysia
Bibliografia
  • [1] S.R. Abdila, M.M.A.B. Abdullah, R. Ahmad, D.D.B. Nergis, S.Z.A. Rahim, M.F. Omar, A.V. Sandu, P. Vizureanu, Syafwandi, Potential of Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS) and Fly Ash via Geopolymerization Method: A Review, Materials 15, 375 (2022). DOI: https://doi.org/10.3390/MA15010375
  • [2] N. Ranjbar, M. Zhang, Fiber-reinforced geopolymer composites: A review, Cement and Concrete Composites 107 (2020). DOI: https://doi.org/10.1016/J.CEMCONCOMP.2019.103498
  • [3] S. Mabroum, S. Moukannaa, A. El Machi, Y. Taha, M. Benzaazoua, R. Hakkou, Mine wastes based geopolymers: A critical review, Cleaner Engineering and Technology 1 (2020). DOI: https://doi.org/10.1016/j.clet.2020.100014
  • [4] C.Y. Heah, H. Kamarudin, A.M.M. Al Bakri, M. Binhussain, L. Musa, I.K. Nizar, C.M.R. Ghazali, Y.M. Liew, Curing Behavior on Kaolin-Based Geopolymers, Advanced Materials Research 548, 42-47 (2012). DOI: https://doi.org/10.4028/www.scientific.net/amr.548.42
  • [5] M.I.I. Ramli, M.A.A.M. Salleh, M.M.A.B. Abdullah, I.H. Aziz, T.C. Ying, N.F. Shahedan, W. Kockelmann, A. Fedrigo, A.V. Sandu, P. Vizureanu, J. Chaiprapa, D.D.B. Nergis, The Influence of Sintering Temperature on the Pore Structure of an Alkali-Activated Kaolin-Based Geopolymer Ceramic, Materials 15 (2022). DOI: https://doi.org/10.3390/Ma15072667
  • [6] D. Doru, B. Nergis, P. Vizureanu, A.V. Sandu, D. Petronela, C. Bejinariu, XRD and TG-DTA Study of New Phosphate-Based Geopolymers with Coal Ash or Metakaolin as Aluminosilicate Source and Mine Tailings Addition, Materials 15, 202 (2022). DOI: https://doi.org/10.3390/MA15010202
  • [7] D.D. Burduhos Nergis, P. Vizureanu, S. Lupescu, D.P. Burduhos Nergis, M.C. Perju, A.V. Sandu, Microstructural Analysis of Ambient Cured Phosphate Based-Geopolymers with Coal-Ash as Precursor, Arch. Metall. Mater. 67, 595-600 (2022). DOI: https://doi.org/10.24425/AMM.2022.137795
  • [8] D.D. Burduhos Nergis, M.M.A.B. Abdullah, A.V. Sandu, P. Vizureanu, XRD and TG-DTA Study of New Alkali Activated Materials Based on Fly ash with Sand and Glass Powder, Materials 13, 343 (2020). DOI: https://doi.org/10.3390/ma13020343
  • [9] D.L.C. Hao, R.A. Razak, M. Kheimi, Z. Yahya, M.M.A.B. Abdullah, D.D. Burduhos Nergis, H. Fansuri, R. Ediati, R. Mohamed, A. Abdullah, Artificial Lightweight Aggregates Made from Pozzolanic Material: A Review on the Method, Physical and Mechanical Properties, Thermal and Microstructure, Materials 15, 3929 (2022). DOI: https://doi.org/10.3390/MA15113929
  • [10] B. Skariah Thomas, J. Yang, A. Bahurudeen, S.N. Chinnu, J.A. Abdalla, R.A. Hawileh, H.M. Hamada, Geopolymer concrete incorporating recycled aggregates: A comprehensive review, Cleaner Materials 3, 100056 (2022). DOI: https://doi.org/10.1016/J.CLEMA.2022.100056
  • [11] M. Panizza, M. Natali, E. Garbin, S. Tamburini, M. Secco, Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material, Constr. Build. Mater. 181, 119-133 (2018). DOI: https://doi.org/10.1016/J.CONBUILDMAT.2018.06.018
  • [12] J. Tan, J. Cai, X. Li, J. Pan, J. Li, Development of eco-friendly geopolymers with ground mixed recycled aggregates and slag, Journal of Cleaner Production 256 (2020). DOI: https://doi.org/10.1016/J.JCLEPRO.2020.120369
  • [13] A.K. Saha, S. Majhi, P.K. Sarker, A. Mukherjee, A. Siddika, F. Aslani, Y. Zhuge, Non-destructive prediction of strength of concrete made by lightweight recycled aggregates and nickel slag, Journal of Building Engineering 33 (2021). DOI: https://doi.org/10.1016/J.JOBE.2020.101614
  • [14] N. Makul, R. Fediuk, M. Amran, A.M. Zeyad, G. Murali, N. Vatin, S. Klyuev, T. Ozbakkaloglu, Y. Vasilev, Use of recycled concreto aggregates in production of green cement-based concrete composites: A review, Crystals (Basel) 11, 1-35 (2021). DOI: https://doi.org/10.3390/CRYST11030232
  • [15] B. Skariah Thomas, J. Yang, A. Bahurudeen, S.N. Chinnu, J.A. Abdalla, R.A. Hawileh, H.M. Hamada, Geopolymer concrete incorporating recycled aggregates: A comprehensive review, Cleaner Materials 3, 100056 (2022). DOI: https://doi.org/10.1016/J.CLEMA.2022.100056
  • [16] B. Bolborea, C. Baera, S. Dan, A. Gruin, D.D. Burduhos-Nergis, V. Vasile, Concrete Compressive Strength by Means of Ultrasonic Pulse Velocity and Moduli of Elasticity, Materials 14, 7018 (2021). DOI: https://doi.org/10.3390/MA14227018
  • [17] P. Vizureanu, D.D. Burduhos Nergis, Green Materials Obtained by Geopolymerization for a Sustainable Future, Materials Research Foundations, 105 Springdale Lane, Millersville, PA 17551 U.S.A., 90, ISBN 978-1-64490-112-0. DOI: https://doi.org/10.21741/9781644901137
  • [18] L. Assi, K. Carter, E. (Eddie) Deaver, R. Anay, P. Ziehl, Sustainable concrete: building a greener future, J. Clean. Prod. 198, 1641-1651 (2018). DOI: https://doi.org/10.1016/j.jclepro.2018.07.123
  • [19] J. Davidovits, Geopolymer Institute Library. Technical paper #24, False-CO2-values, Scientific Papers, Technical Paper #24, Geopolymer Institute Library, Www.geopolymer.org. (2015). http://www.materialstoday.com/polymers-soft-materials/features/environmental-implications-of-geopolymers/, (accessed February 8, 2022).
  • [20] F.U.A. Shaikh, A. Hosan, Mechanical properties of steel fibre reinforced geopolymer concretes at elevated temperatures, Constr. Build. Mater. 114, 15-28 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.158
  • [21] A.G.N. Abbas, F.N.A.A. Aziz, K. Abdan, N.A.M. Nasir, G.F. Huseien, A state-of-the-art review on fibre-reinforced geopolymer composites, Constr. Build. Mater. 330 (2022). DOI: https://doi.org/10.1016/j.conbuildmat.2022.127187
  • [22] S. Škapa, M. Vochozka, Techno-economic considerations: turning fermentation residues into lightweight concrete, Energy Sourc Part A Recovery Utilization Environ Effects 41, 1041-1048 (2019). DOI: https://doi.org/10.1080/15567036.2018.1539137
  • [23] European Construction Industry Federation - ECCREDI, (n.d.). https://www.eccredi.org/portfolio-items/european-construction-industry-federation/ (accessed June 15, 2022)
  • [24] FIEC - Annual Report 2021, (n.d.). https://www.fiec-ar.eu/en/ (accessed June 15, 2022).
  • [25] P. Bertoldi, M. Economidou, V. Palermo, B. Boza-Kiss, V. Todeschi, How to finance energy renovation of residential buildings: Review of current and emerging financing instruments in the EU, Wiley Interdisciplinary Reviews: Energy and Environment 10 (2021). DOI: https://doi.org/10.1002/WENE.384
  • [26] Romania, (n.d.). https://ec.europa.eu/growth/sectors/construction/observatory/country-fact-sheets/romania_en (accessed June 15, 2022).
  • [27] H. Salmenperä, K. Pitkänen, P. Kautto, L. Saikku, Critical factors for enhancing the circular economy in waste management, J. Clean. Prod. 280 (2021). DOI: https://doi.org/10.1016/j.jclepro.2020.124339
  • [28] E. Papa, V. Medri, C. Paillard, B. Contri, A. Natali Murri, A. Vaccari, E. Landi, Geopolymer-hydrotalcite composites for CO2 capture, J. Clean. Prod. 237 (2019). DOI: https://doi.org/10.1016/j.jclepro.2019.117738
Uwagi
This paper was financially supported by the Project “Network of excellence in applied research and innovation for doctoral and postdoctoral programs”/InoHubDoc, project co-funded by the European Social Fund financing agreement no. POCU/993/6/13/153437. This paper was also supported by “Gheorghe Asachi” Technical University from Iaşi (TUIASI), through the Project “Performance and excellence in postdoctoral research 2022”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29c8faec-bf9a-44db-8c08-607e7c7503b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.