PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Fish Stocking Density on Water Quality, Growth Performance of Tilapia and Yield of Butterhead Lettuce Grown in Decoupled Recirculation Aquaponic Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was conducted over a period of 52 days to determine the effects of fish stocking density on the water quality, growth performance of tilapia and yield of butterhead lettuce cultivated in decoupled recirculation aquaponic systems (DRAPS). In this study, three respective tilapia stocking densities (treatments) of 8 kg•m-3, 10 kg•m-3, and 12 kg•m-3 were used to evaluate the butterhead lettuce in the DRAPS, which consist of two independent loops. All treatments were done in triplicates. The results showed with increased stocking density, the electrical conductivity, total dissolved substances and salinity increased and dissolved oxygen decline. The results showed that the highest stocking density produced the highest nutrients accumulation of ammonia-nitrogen (NH3-N), ammonium (NH4), nitrite-nitrogen (NO2-N) and nitrate-nitrogen (NO3-N) and potassium (K) except for phosphorus (P). Nevertheless, based on the conversion of fish feed to NO3-N and P per kilogram of feeds, the lowest stocking density provided the highest concentration of NO3-N and P. It was documented that DRAPS relied solely on the fish waste produced an insufficient concentration of N, P, K and iron. The average survival rate of tilapia in all treatments was above 94% and was not a significant difference among the treatments.
Rocznik
Strony
8--19
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Bibliografia
  • 1. Adler, P., Takeda, F., Glenn, D., & Summerfelt, S. 1996. Utilizing byproducts to enhance aquaculture sustainability. World Aquaculture, 27(2), 24–26.
  • 2. Ajitama, P., Effendi, H., & Hariyadi, S.2018. Usage of fisheries rearing waste for butterhead lettuce (Lactuca sativa L. var. capitata) cultivation in recirculation. Nature Environment and Pollution Technology, 17(1), 145–151.
  • 3. Blanchard, C., Wells, D. E., Pickens, J. M., & Blersch, D. M. 2020. Effect of pH on Cucumber Growth and Nutrient Availability in a Decoupled Aquaponic System with Minimal Solids Removal. Horticulturae, 6(1), 10.
  • 4. Briat, J. F., Curie, C., & Gaymard, F.2007. Iron utilization and metabolism in plants. Current opinion in plant biology, 10(3), 276–282. https://doi.org/10.1016/j.pbi.2007.04.003
  • 5. Brown, S., McIvor, K., & Snyder, E. H. (Eds.) .2016. Sowing seeds in the city: Ecosystem and municipal services. Dordrecht: Springer
  • 6. Buzby, K. M., & Lin, L. S.2014. Scaling aquaponic systems: Balancing plant uptake with fish output. Aquacultural Engineering, 63, 39–44. https://doi.org/10.1016/j.aquaeng.2014.09.002
  • 7. Capkin, E., Kayis, S., Boran, H., & Altinok, I. 2010. Acute toxicity of some agriculture fertilizers to rainbow trout. Turkish Journal of Fisheries and Aquatic Sciences, 10(1), 19–25. https://doi.org/10.4194/trjfas.2010.0103
  • 8. Delaide, B., Goddek, S., Gott, J., Soyeurt, H., & Jijakli, M. H.2016. Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water, 8(10), 467. https://doi.org/10.3390/w8100467
  • 9. DeLong, P.D., Losordo, M.T. and Rakocy, J.E.2009. Tank Culture of Tilapia. SRAC Publication, No. 282, Texas, USA, 7 pp
  • 10. Eding, E. H., Kamstra, A., Verreth, J. A. J., Huisman, E. A., & Klapwijk, A.2006. Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquacultural engineering, 34(3), 234–260. https://doi.org/10.1016/j.aquaeng.2005.09.007
  • 11. Ebeling, J. M., Timmons, M. B., & Bisogni, J. J.2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1–4), 346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019
  • 12. El-Sayed, A.-F.M. Tilapia Culture; CABI Publishing: Oxfordshire, UK, 2006.
  • 13. Emerson, K., Russo, R.C., Lund, R.E. and Thurston, R.V.1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Board of Canada, 32(12), pp.2379–2383.
  • 14. Endut, A., Jusoh, A., Ali, N., Nik, W. W., & Hassan, A.2010. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource technology, 101(5), 1511–1517. https://doi.org/10.1016/j.biortech.2009.09.040
  • 15. Espinosa Moya, E. A., Angel Sahagún, C. A., Mendoza Carrillo, J. M., Albertos Alpuche, P. J., Álvarez-González, C. A., & Martínez-Yáñez, R.2016. Herbaceous plants as part of biological filter for aquaponics system. Aquaculture Research, 47(6), 1716–1726. https://doi.org/10.1111/are.12626
  • 16. Estim, A., Saufie, S., & Mustafa, S.2019. Water quality remediation using aquaponics sub-systems as biological and mechanical filters in aquaculture. Journal of Water Process Engineering, 30, 100566. https://doi.org/10.1016/j.jwpe.2018.02.001
  • 17. Geisenhoff, L. O., Jordan, R. A., Santos, R. C., Oliveira, F. C. D., & Gomes, E. P. 2016. Effect of different substrates in aquaponic lettuce production associated with intensive tilapia farming with water recirculation systems. Engenharia Agrícola, 36(2), 291–299. https://doi.org/10.1590/1809–4430-Eng.Agric.v36n2p291–299/2016.
  • 18. Graber, A., & Junge, R. 2009. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination, 246(1–3), 147–156. https://doi.org/10.1016/j.desal.2008.03.048
  • 19. Hargreaves, J.A. and Tucker, C.S.2004. Managing ammonia in fish ponds (Vol. 4603). Stoneville, MS: Southern Regional Aquaculture Center.
  • 20. Harmon, T. S. 2009. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: a review of the basics. Reviews in Aquaculture, 1(1), 58–66. https://doi.org/10.1111/j.1753–5131.2008.01003.x
  • 21. Jimoh, W.A., Kamarudin, M.S., Sulaiman, M.A. and Dauda, A.B.2019. Assessment of prebiotic potentials in selected leaf meals of high dietary fibre on growth performance, body composition, nutrient utilization and amylase activities of a tropical commercial carp fingerlings. Aquaculture Research, 50(11), 3401–3411. https://doi.org/10.1111/are.14298
  • 22. Jones, J. B., 2005. Hydroponics: a practical guide for the soilless grower. CRC Press
  • 23. Jordan, R.A., Geisenhoff, L.O., Oliveira, F.C.D., Santos, R.C. and Martins, E.A. 2018a. Yield of lettuce grown in aquaponic system using different substrates. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(1), 27–31. https://doi.org/10.1590/1807–1929/agriambi.v22n1p27–31
  • 24. Jordan, R. A., Ribeiro, E. F., Oliveira, F. C. D., Geisenhoff, L. O., & Martins, E. A.2018. Yield of lettuce grown in hydroponic and aquaponic systems using different substrates. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(8), 525–529. https://doi.org/10.1590/1807–1929/agriambi.v22n8p525–529
  • 25. Karimanzira, D., Keesman, K. J., Kloas, W., Baganz, D., & Rauschenbach, T. 2016. Dynamic modeling of the INAPRO aquaponic system. Aquacultural engineering, 75, 29–45. https://doi.org/10.1016/j.aquaeng.2016.10.004
  • 26. Kloas, W., Groß, R., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., Suhl, J., Tschirner, M., Wittstock, B. and Wuertz, S.2015. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interactions 7(2), 179–192. https://doi.org/10.3354/aei00146
  • 27. Knaus, U., & Palm, H. W. 2017. Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania). Aquaculture, 473,62–73. https://doi.org/10.1016/j.aquaculture.2017.01.020
  • 28. Kosegarten, H., & Koyro, H. W. 2001. Apoplastic accumulation of iron in the epidermis of maize (Zea mays) roots grown in calcareous soil. Physiologia plantarum, 113(4), 515–522. https://doi.org/10.1034/j.1399–3054.2001.1130410.x
  • 29. Li, M., Wang, X., Qi, C., Li, E., Du, Z., Qin, J. G., & Chen, L. 2018. Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress. Aquaculture, 495, 187–195. https://doi.org/10.1016/j.aquaculture.2018.05.031
  • 30. Liang, J. Y., & Chien, Y. H. 2013. Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia–water spinach raft aquaponics system. International Biodeterioration & Biodegradation, 85, 693–700. https://doi.org/10.1016/j.ibiod.2013.03.029
  • 31. Licamele J. 2009. Biomass production and nutrient dynamics in an aquaponics system. PhD thesis. Department of Agriculture and biosystems engineering, University of Arizona
  • 32. Love, D.C., Fry, J.P., Li, X., Hill, E.S., Genello, L., Semmens, K., Thompson, R.E.2015. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture. 435. 67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023
  • 33. Madar, Á.K., Rubóczki, T. and Hájos, M.T. 2019. Lettuce production in aquaponic and hydroponic systems. Acta Universitatis Sapientiae, Agriculture and Environment, 11(1),51–59. https://doi.org/10.2478/ausae-2019–0005
  • 34. Mahfouz, M. E., Hegazi, M. M., El-Magd, M. A., & Kasem, E. A.2015. Metabolic and molecular responses in Nile tilapia, Oreochromis niloticus during short and prolonged hypoxia. Marine and Freshwater Behaviour and Physiology, 48(5), 319–340. https://doi.org/10.1080/10236244.2015.1055915
  • 35. Monsees, H., Kloas, W. and Wuertz, S. 2017. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes. PloS one, 12(9), p.e0183056. https://doi.org/10.1371/journal.pone.0183056
  • 36. Monsees, H., Suhl, J., Paul, M., Kloas, W., Dannehl, D. and Würtz, S.2019. Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS ONE 14(6): e0218368. https://doi.org/10.1371/journal.pone.0218368
  • 37. Nozzi, V., Graber, A., Schmautz, Z., Mathis, A., & Junge, R. 2018. Nutrient management in aquaponics: comparison of three approaches for cultivating lettuce, mint and mushroom herb. Agronomy, 8(3), 27. https://doi.org/10.3390/agronomy8030027
  • 38. Pérez-Urrestarazu, L., Lobillo-Eguíbar, J., Fernández-Cañero, R., & Fernández-Cabanás, V. M.2019. Suitability and optimization of FAO’s small-scale aquaponics systems for joint production of lettuce (Lactuca sativa) and fish (Carassius auratus). Aquacultural Engineering, 85, 129–137. https://doi.org/10.1016/j.aquaeng.2019.04.001
  • 39. Durborow, R. M., Crosby, D. M., & Brunson, M. W. 1997. Nitrite in fish ponds. Southern Regional Aquaculture Center. SRAC Publication No. 462. http://www.aces.edu/dept/fisheries/aquaculture/pdf/462fs.pdf
  • 40. Rakocy, J.E, Shultz, R.C., Bailey, D.S., Thoman, E.S. 2004. Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. Acta Horticulturae. (ISHS) 648:63–69. https://doi.org/10.17660/ActaHortic.2004.648.8
  • 41. Rakocy, J.E., Masser, M.P., Losordo, T.M.2006. Recirculating aquaculture tank production systems: aquaponics–integrating fish and plant culture. SRAC publication, 454, 1–16.
  • 42. Rakocy, J.2007. Ten Guidelines for Aquaponic Systems. Aquaponics Journal, 46, 14–17. Retrieved from http://santarosa.ifas.ufl.edu/wp-content/uploads/2013/06/Aquaponics-Journal-10-Guidelines.pdf.
  • 43. Rakocy, J.E. 2012. Aquaponics: integrating fish and plant culture. Aquaculture production systems, 1, 344–386. https://doi.org/10.1002/9781118250105.ch14
  • 44. Resh, H.M. 2012. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower. Boca Raton, Florida: CRC Press. Retrieved from http://howardresh.com/dr-howard-resh-hydroponic-services/hydroponic-lettuce-production-i/
  • 45. Resh, H.M. 2013. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower. CRC Press.
  • 46. Roosta, H. R., & Hamidpour, M. 2011. Effects of foliar application of some macroand micro-nutrients on tomato plants in aquaponic and hydroponic systems. Scientia Horticulturae, 129(3), 396–402. https://doi.org/10.1016/j.scienta.2011.04.006
  • 47. Ross, L.G .2000. Environmental physiology and energetics. In Tilapias: Biology and Exploitation; McAndrew, B.J., Ed.; Springer Netherlands: Dordrecht, The Netherlands,89–128
  • 48. Schmautz, Z., Graber, A., Jaenicke, S., Goesmann, A., Junge, R., & Smits, T. H. 2017. Microbial diversity in different compartments of an aquaponics system. Archives of microbiology, 199(4), 613–620. https://doi.org/10.1007/s00203–016–1334–1
  • 49. Seawright, D.E., Stickney, R. R., & Walker, R. B .1998. Nutrient dynamics in integrated aquaculture–hydroponics systems. Aquaculture, 160(3–4), 215–237. https://doi.org/10.1016/S0044–8486(97)00168–3
  • 50. Silva, L., Escalante, E., Valdés-Lozano, D., Hernández, M. and Gasca-Leyva, E. 2017. Evaluation of a semi-intensive aquaponics system, with and without bacterial biofilter in a tropical location. Sustainability, 9(4), 592. https://doi.org/10.3390/su9040592
  • 51. Sreejariya, P., Raynaud, T., Dabbadie, L. and Yakupitiyage, A.2016. Effect of water recirculation duration and shading on lettuce (Lactuca sativa) growth and leaf nitrate content in a commercial aquaponic system. Turkish Journal of Fisheries and Aquatic Sciences, 16 (2): 311–319. http://dx.doi.org/10.4194/1303–2712-v16_2_11
  • 52. Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G. and Schmidt, U.2016. Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178,.335–344. https://doi.org/10.1016/j.agwat.2016.10.013
  • 53. Suhl, J., Dannehl, D., Baganz, D., Schmidt, U. and Kloas, W.2018a. An innovative suction filter device reduces nitrogen loss in double recirculating aquaponic systems. Aquacultural engineering, 82,.63–72. https://doi.org/10.1016/j.aquaeng.2018.06.008.
  • 54. Suhl, J., Dannehl, D., Zechmeister, L., Baganz, D., Kloas, W., Lehmann, B., Scheibe, G. and Schmidt, U .2018b. Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production. Acta horticulturae. 1227, 449–456. https://doi.org/10.17660/ActaHortic.2018.1227.56.
  • 55. Sveier, H., Raae, A.J. and Lied, E. 2000. Growth and protein turnover in Atlantic salmon (Salmo salar L.); the effect of dietary protein level and protein particle size. Aquaculture, 185(1–2), pp.101–120. https://doi.org/10.1016/S0044–8486(99)00344–0
  • 56. Timmons, M.B., and Ebeling, J, M.2013. Recirculating Aquaculture (3rd ed.). Reading, United Kingdom: Ithaca Publishing Company. Retrieved from https://www.amazon.in/Recirculating-Aquaculture-3rd-Michael-Timmons/dp/0971264651
  • 57. Timmons, M.B., Ebeling, J.M., Wheaton, F.W., Summerfelt,S.T. & Vinci, B.J.2002 Recirculating Aquaculture Systems (2nd Ed.). Cayuga Aqua Ventures, Ithaca, NY, Northeastern Regional Aquaculture Center Publication 01–002
  • 58. Trang, N. T, D., and Brix, H. 2014. Use of planted biofilters in integrated recirculating aquaculturehydroponics systems in the Mekong Delta, Vietnam. Aquac Res, 45: 460–469. https://doi:10.1111/j.1365–2109.2012.03247.
  • 59. Zaki, M.A., Alabssawy, A.N., Nour, A.E.A.M., El Basuini, M.F., Dawood, M.A., Alkahtani, S. and Abdel-Daim, M.M. 2020. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquaculture Reports, 16, p.100282. https://doi.org/10.1016/j.aqrep.2020.100282
  • 60. Zhao, Z., Dong, S. and Xu, Q. 2018. Respiratory response of grass carp Ctenopharyngodon idellus to dissolved oxygen changes at three acclimation temperatures. Fish physiology and biochemistry, 44(1), pp.63–71. https://doi.org/10.1007/s10695–017–0413–9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29c722d2-7566-477d-a712-2b2ef4c58b46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.