PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new efficient adaptive control of torsional vibrations induced by switched nonlinear disturbances

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Torsional vibrations induced in drilling systems are detrimental to the condition of the machine and to the effectiveness of the engineering process. The cause of vibrations is a nonlinear and unknown friction between a drill string and the environment, containing jumps in its characteristics. Nonlinear behaviour of the friction coefficient results in self-excited vibration and causes undesirable stick-slip oscillations. The aim of this paper is to present a novel adaptive technique of controlling vibrating systems. The scheme is based on the linear quadratic regulator and uses direct measurements of the friction torque to synthesize its linear dynamic approximation. This approach allows generating a control law that takes into account the impact of the friction on the system dynamics and optimally steers the system to the desired trajectory. The controller’s performance is examined via numerical simulations of the stabilization of the drilling system. The proposed solution outperforms the comparative LQG regulator in terms of the minimization of the assumed cost functional and the overall stability of the control system under the nonlinear disturbance.
Rocznik
Strony
285--303
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-105 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-105 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-105 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-105 Warsaw, Poland
Bibliografia
  • [1] Alin, A. (2010). Multicollinearity, Wiley Interdisciplinary Reviews: Computational Statistics 2(3): 370–374, DOI: 10.1002/wics.84.
  • [2] Bailey, J.R. and Remmert, S.M. (2010). Managing drilling vibrations through BHA design optimization, SPE Drilling & Completion 25(4): 458–471, DOI: 10.2118/139426-PA.
  • [3] Bajer, C.I., Pisarski, D., Szmidt, T. and Dyniewicz, B. (2017). Intelligent damping layer under a plate subjected to a pair of masses moving in opposite directions, Journal of Sound and Vibration 394: 333–347, DOI: 10.1016/j.jsv.2017.01.046.
  • [4] Christoforou, A.P. and Yigit, A.S. (2003). Fully coupled vibrations of actively controlled drillstrings, Journal of Sound and Vibration 267(5): 1029–1045, DOI: 10.1016/S0022-460X(03)00359-6.
  • [5] Davis, J.E., Smyth, G.F., Bolivar, N. and Pastusek, P.E. (2012). Eliminating stick-slip by managing bit depth of cut and minimizing variable torque in the drillstring, IADC/SPE Drilling Conference and Exhibition, San Diego, CA, USA, pp. 402–410, DOI: 10.2118/151133-MS.
  • [6] Farrar, D.E. and Glauber, R.R. (1967). Multicollinearity in regression analysis: The problem revisited, The Review of Economics and Statistics 49(1): 92–107, DOI: 10.2307/1937887.
  • [7] Fear, M.J. and Abbassian, F. (1994). Experience in the detection and suppression of torsional vibration from mud logging data, European Petroleum Conference, London, UK, pp. 433–448, DOI: 10.2118/28908-MS.
  • [8] Hernandez-Suarez, R., Puebla, H., Aguilar-Lopez, R. and Hernandez-Martinez, E. (2009). An integral high-order sliding mode control approach for stick-slip suppression in oil drillstrings, Petroleum Science and Technology 27(8): 788–800, DOI: 10.1080/10916460802455483.
  • [9] Hillsley, K.L. and Yurkovich, S. (1991). Vibration control of a two-link flexible robot arm, 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, Vol. 3, pp. 212–216, DOI: 10.1109/ROBOT.1991.131941.
  • [10] Jansen, J.D. and van den Steen, L. (1995). Active damping of self-excited torsional vibrations in oil well drillstrings, Journal of Sound and Vibration 179(4): 647–668, DOI: 10.1006/jsvi.1995.0042.
  • [11] Kar, I.N., Miyakura, T. and Seto, K. (2000a). Bending and torsional vibration control of a flexible plate structure using H∞-based robust control law, IEEE Transactions on Control Systems Technology 8(3): 545–553, DOI: 10.1109/87.845884.
  • [12] Kar, I.N., Seto, K. and Doi, F. (2000b). Multimode vibration control of a flexible structure using H∞-based robust control, IEEE/ASME Transactions on Mechatronics 5(1): 23–31, DOI: 10.1109/3516.828586.
  • [13] Kreuzer, E. and Steidl, M. (2012). Controlling torsional vibrations of drill strings via decomposition of traveling waves, Archive of Applied Mechanics 82(4): 515–531, DOI: 10.1007/s00419-011-0570-8.
  • [14] Kucuk, I., Yildirim, K., Sadek, I. and Adali, S. (2013). Active control of forced vibrations in a beam via Maximum principle, 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Hammamet, Tunisia, pp. 1–4, DOI: 10.1109/ICMSAO.2013.6552558.
  • [15] Li, X., Agarwal, R.K. and Shue, S.-P. S.-P. (1994). Optimal control and H∞ filter for control of Timoshenko beam vibrations using piezoelectric material, Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, Vol. 2, pp. 1566–1571, DOI: 10.1109/CDC.1998.758513.
  • [16] Michajłow, M., Jankowski, Ł., Szolc, T. and Konowrocki, R. (2017). Semi-active reduction of vibrations in the mechanical system driven by an electric motor, Optimal Control Applications and Methods 38(6): 2–8, DOI: 10.1002/oca.2297.
  • [17] Mihajlović, N., van Veggel, A.A., van de Wouw, N. and Nijmeijer, H. (2004). Analysis of friction-induced limit cycling in an experimental drill-string system, Journal of Dynamic Systems, Measurement, and Control 126(4): 709–720, DOI: 10.1115/1.1850535.
  • [18] Mohamed, Z., Chee, A.K., Hashim, A.W.I.M., Tokhi, M.O., Amin, S.H.M. and Mamat, R. (2006). Techniques for vibration control of a flexible robot manipulator, Robotica 24(4): 499–511, DOI: 10.1017/S0263574705002511.
  • [19] Monteiro, H.L.S. and Trindade, M.A. (2017). Performance analysis of proportional-integral feedback control for the reduction of stick-slip-induced torsional vibrations in oil well drillstrings, Journal of Sound and Vibration 398: 28–38, DOI: 10.1016/j.jsv.2017.03.013.
  • [20] Orlowska-Kowalska, T., Kaminski, M. and Szabat, K. (2010). Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint, IEEE Transactions on Industrial Electronics 57(4): 1309–1317, DOI: 10.1109/TIE.2009.2030823.
  • [21] Pisarski, D. and Bajer, C.I. (2010). Semi-active control of 1D continuum vibrations under a travelling load, Journal of Sound and Vibration 329(2): 140–149, DOI: 10.1016/j.jsv.2009.09.006.
  • [22] Pisarski, D. and Canudas-de-Wit, C. (2016). Nash game-based distributed control design for balancing traffic density over freeway networks, IEEE Transactions on Control of Network Systems 3(2): 149–161, DOI: 10.1109/TCNS.2015.2428332.
  • [23] Pisarski, D. and Myśliński, A. (2017). Online adaptive algorithm for optimal control of structures subjected to travelling loads, Optimal Control Applications and Methods 38(6): 1168–1186, DOI: 10.1002/oca.2321.
  • [24] Priesner, R. and Jakubek, S. (2014). Mechanical impedance control of rotatory test beds, IEEE Transactions on Industrial Electronics 61(11): 6264–6274, DOI: 10.1109/TIE.2014.2308159.
  • [25] Serrarens, A.F.A., Van De Molengraft, M.J.G., Kok, J.J. and Van Den Steen, L. (1998). h∞ control for suppressing stick-slip in oil well drillstrings, IEEE Control Systems Magazine 18(2): 19–30, DOI: 10.1109/37.664652.
  • [26] Singhose, W. (2009). Command shaping for flexible systems: A review of the first 50 years, International Journal of Precision Engineering and Manufacturing 10(4): 153–168, DOI: 10.1007/s12541-009-0084-2.
  • [27] Symans, M.D. and Constantinou, M.C. (1999). Semi-active control systems for seismic protection of structures: a state-of-the-art review, Engineering Structures 21(6): 469–487, DOI: 10.1016/S0141-0296(97)00225-3.
  • [28] Szabat, K., Tran-Van, T. and Kaminski, M. (2015). A modified fuzzy Luenberger observer for a two-mass drive system, IEEE Transactions on Industrial Informatics 11(2): 531–539, DOI: 10.1109/TII.2014.2327912.
  • [29] Tzes, A. and Yurkovich, S. (1993). An adaptive input shaping control scheme for vibration suppression in slewing flexible structures, IEEE Transactions on Control Systems Technology 1(2): 114–121, DOI: 10.1109/87.238404.
  • [30] van de Vrande, B.L., van Campen, D.H. and de Kraker, A. (1999). An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure, Nonlinear Dynamics 19(2): 159–171, DOI: 10.1023/A:1008306327781.
  • [31] Wang, S., Ren, X. and Na, J. (2016). Adaptive dynamic surface control based on fuzzy disturbance observer for drive system with elastic coupling, Journal of the Franklin Institute 353(8): 1899–1919, DOI: 10.1016/j.jfranklin.2016.03.006.
  • [32] Young, K. (1998). A polar coordinate based sliding mode design for vibration control, IEEE International Workshop on Variable Structure Systems, VSS’96, Tokyo, Japan, Vol. 8, pp. 181–186, DOI: 10.1109/VSS.1996.578606.
  • [33] Zhu, X., Tang, L. and Yang, Q. (2015). A literature review of approaches for stick-slip vibration suppression in oilwell drillstring, Advances in Mechanical Engineering 6: 1–17, DOI: 10.1155/2014/967952.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29c051fd-e31b-4948-9345-1a9903e64b8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.