PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of selected parameters on performance of the Adiabatic Liquid Air Energy Storage system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a thermodynamic analysis of a selected hypothetical liquid air energy storage (LAES) system. The adiabatic LAES cycle is a combination of an air liquefaction cycle and a gas turbine power generation cycle without fuel combustion. In such a system, heat of compression is stored and subsequently used during the expansion process in the turbine. A mathematical model of the adiabatic LAES system was constructed. Balance calculation for a selected configuration of the energy storage system was performed. The influence of pressure in the air liquefaction cycle and the gas turbine power generation cycle on storage energy efficiency was analyzed. The results show that adiabatic liquid air energy storage systems could be very effective systems for storing electrical power, with efficiency levels reaching as high as 57%.
Rocznik
Strony
238--244
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
autor
  • National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Athens, Greece
autor
  • National Technical University of Athens, Heroon Polytechniou 9, 15780 Zografou, Athens, Greece
Bibliografia
  • [1] M. Wołowicz, J. Milewski, K. Futyma, W. Bujalski, Boosting the efficiency of an 800 mw-class power plant through utilization of low temperature heat of flue gases, in: Applied Mechanics and Materials, Vol. 483, Trans Tech Publ, 2014, pp. 315–321.
  • [2] A. Skorek-Osikowska, L. Bartela, Model of a supercritical oxy-boileranalysis of the selected parameters, Rynek Energii (5) (2010) 69–75.
  • [3] K. Badyda, Characteristcs of advanced gas turbine cycles, Rynek Energii (3) (2010) 80–86.
  • [4] J. Kotowicz, Ł. Bartela, The influence of the legal and economical environment and the profile of activities on the optimal design features of a natural-gas-fired combined heat and power plant, Energy 36 (1) (2011) 328–338.
  • [5] J. Kotowicz, M. Job, M. Brzęczek, The characteristics of ultramodern combined cycle power plants, Energy 92 (2015) 197–211.
  • [6] M. Skrzypek, R. Laskowski, Thermal-hydraulic calculations for a fuel assembly in a european pressurized reactor using the relap5 code, Nukleonika 60 (3) (2015) 537–544.
  • [7] D. Ziviani, A. Beyene, M. Venturini, Advances and challenges in orc systems modeling for low grade thermal energy recovery, Applied Energy 121 (2014) 79–95.
  • [8] H. Madi, A. Lanzini, S. Diethelm, D. Papurello, M. Lualdi, J. G. Larsen, M. Santarelli, et al., Solid oxide fuel cell anode degradation by the effect of siloxanes, Journal of Power Sources 279 (2015) 460–471.
  • [9] J. Milewski, A. Miller, J. Sałaci´ nski, Off-design analysis of sofc hybrid system, International Journal of Hydrogen Energy 32 (6) (2007) 687–698.
  • [10] J. Kupecki, Modeling platform for a micro-chp system with sofc operating under load changes, in: Applied Mechanics and Materials, Vol. 607, Trans Tech Publ, 2014, pp. 205–208.
  • [11] J. Milewski, T. Świercz, K. Badyda, A. Miller, A. Dmowski, P. Biczel, The control strategy for a molten carbonate fuel cell hybrid system, international journal of hydrogen energy 35 (7) (2010) 2997–3000.
  • [12] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski, Variant analysis of the structure and parameters of sofc hybrid systems, in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ, 2013, pp. 306–312.
  • [13] J. Kupecki, J. Milewski, A. Szcześniak, R. Bernat, K. Motylinski, Dynamic numerical analysis of cross-, co-, and counter-current flow configuration of a 1 kw-class solid oxide fuel cell stack, International Journal of Hydrogen Energy 40 (45) (2015) 15834–15844.
  • [14] J. Milewski, K. Badyda, Z. Misztal, M. Wołowicz, Combined heat and power unit based on polymeric electrolyte membrane fuel cell in a hotel application, Rynek Energii (5) (2010) 118–123.
  • [15] J. Milewski, J. Lewandowski, Solid oxide fuel cell fuelled by biofuels, ECS Transactions 25 (2) (2009) 1031–1040.
  • [16] J. Kupecki, Off-design analysis of a micro-chp unit with solid oxide fuel cells fed by dme, International Journal of Hydrogen Energy 40 (35) (2015) 12009–12022.
  • [17] J. Milewski, W. Bujalski, M. Wołowicz, K. Futyma, J. Kucowski, R. Bernat, Experimental investigation of co 2 separation from lignite flue gases by 100 cm 2 single molten carbonate fuel cell, International Journal of Hydrogen Energy 39 (3) (2014) 1558–1563.
  • [18] J. Milewski, G. Discepoli, U. Desideri, Modeling the performance of mcfc for various fuel and oxidant compositions, International Journal of Hydrogen Energy 39 (22) (2014) 11713–11721.
  • [19] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal combustion engine fuelled by natural gas operating in distributed generation, Energy Procedia 14 (2012) 1478–1483.
  • [20] L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a natural gas fuelled piston engine working in distributed generation system, Rynek Energii (3) (2011) 33–40.
  • [21] L. Chybowski, R. Laskowski, K. Gawdzińska, An overview of systems supplying water into the combustion chamber of diesel engines to decrease the amount of nitrogen oxides in exhaust gas, Journal of Marine Science and Technology 20 (3) (2015) 393–405.
  • [22] D. Thombare, S. Verma, Technological development in the stirling cycle engines, Renewable and Sustainable Energy Reviews 12 (1) (2008) 1–38.
  • [23] A. Chmielewski, R. Gumiński, S. Radkowski, Chosen properties of a dynamic model of crankshaft assembly with three degrees of freedom, in: Methods and Models in Automation and Robotics (MMAR), 2015 20th International Conference on, IEEE, 2015, pp. 1038–1043.
  • [24] A. Chmielewski, R. Gumiński, J. Mączak, S. Radkowski, P. Szulim, Aspects of balanced development of res and distributed microcogeneration use in poland: Case study of a _chp with stirling engine, Renewable and Sustainable Energy Reviews 60 (2016) 930–952.
  • [25] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Research study of the micro cogeneration system with automatic loading unit, in: Challenges in Automation, Robotics and Measurement Techniques, Springer, 2016, pp. 375–386.
  • [26] K. Wang, S. R. Sanders, S. Dubey, F. H. Choo, F. Duan, Stirling cycle engines for recovering low and moderate temperature heat: A review, Renewable and Sustainable Energy Reviews 62 (2016) 89–108.
  • [27] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Research on a micro cogeneration system with an automatic loadapplying entity, in: Challenges in Automation, Robotics and Measurement Techniques, Springer, 2016, pp. 387–395.
  • [28] K. Badyda, H. Kaproń, Operation and development of wind energy in poland, Rynek Energii 3 (2013) 61–67, in Polish.
  • [29] K. Badyda, Energetics in poland. do we have a concept of development?, Energetyka 5 (2015) 274–283, in Polish.
  • [30] P. Zahadat, J. Milewski, Modeling electrical behavior of solid oxide electrolyzer cells by using artificial neural network, International Journal of Hydrogen Energy 40 (23) (2015) 7246–7251.
  • [31] E. Barbour, D. Mignard, Y. Ding, Y. Li, Adiabatic compressed air energy storage with packed bed thermal energy storage, Applied Energy 155 (2015) 804–815.
  • [32] F. de Bosio, V. Verda, Thermoeconomic analysis of a compressed air energy storage (caes) system integrated with a wind power plant in the framework of the ipex market, Applied Energy 152 (2015) 173–182.
  • [33] W. Liu, L. Liu, L. Zhou, J. Huang, Y. Zhang, G. Xu, Y. Yang, Analysis and optimization of a compressed air energy storage—combined cycle system, Entropy 16 (6) (2014) 3103–3120.
  • [34] L. Szablowski, J. Milewski, Dynamic analysis of compressed air energy storage in the car, Journal of Power Technologies 91 (1) (2011) 23–36.
  • [35] R. Morgan, S. Nelmes, E. Gibson, G. Brett, Liquid air energy storage–analysis and first results from a pilot scale demonstration plant, Applied Energy 137 (2015) 845–853.
  • [36] X. Xue, S. Wang, X. Zhang, C. Cui, L. Chen, Y. Zhou, J. Wang, Thermodynamic analysis of a novel liquid air energy storage system, Physics Procedia 67 (2015) 733–738.
  • [37] B. Kantharaj, S. Garvey, A. Pimm, Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air, Sustainable Energy Technologies and Assessments 11 (2015) 159–164.
  • [38] B. Kantharaj, S. Garvey, A. Pimm, Compressed air energy storage with liquid air capacity extension, Applied Energy 157 (2015) 152–164.
  • [39] S. Wang, X. Xue, X. Zhang, J. Guo, Y. Zhou, J. Wang, The application of cryogens in liquid fluid energy storage systems, Physics Procedia 67 (2015) 728–732.
  • [40] A. J. Pimm, S. D. Garvey, B. Kantharaj, Economic analysis of a hybrid energy storage system based on liquid air and compressed air, Journal of Energy Storage 4 (2015) 24–35.
  • [41] M. Wang, P. Zhao, Y. Wu, Y. Dai, Performance analysis of a novel energy storage system based on liquid carbon dioxide, Applied Thermal Engineering 91 (2015) 812–823.
  • [42] R. F. Abdo, H. T. Pedro, R. N. Koury, L. Machado, C. F. Coimbra, M. P. Porto, Performance evaluation of various cryogenic energy storage systems, Energy 90 (2015) 1024–1032.
  • [43] B. Ameel, C. T’Joen, K. De Kerpel, P. De Jaeger, H. Huisseune, M. Van Belleghem, M. De Paepe, Thermodynamic analysis of energy storage with a liquid air rankine cycle, Applied Thermal Engineering 52 (1) (2013) 130–140.
  • [44] AspenTech, HYSYS 3.2 Operations Guide (2003).
  • [45] D.-Y. Peng, D. B. Robinson, A new two-constant equation of state, Industrial & Engineering Chemistry Fundamentals 15 (1) (1976) 59–64.
  • [46] P. Krawczyk, . Szabłowski, K. Badyda, Energy analysis of liquid air energy storage cycle. influence of the pressure in the liquefaction section on the process efficiency, in: Proceedings of VI Science and Technical Conference - Gaseous Energetics 2016, Vol. 2, 2016, pp. 47–58.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29c01515-cd16-4db7-b326-6a673d867782
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.