PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production and Characterization of Liquid Smoke from Coconut Shell Waste as an Effort to Reduce the Impact on Environmental Pollution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research examined the influence of pyrolysis temperature on a large-size feedstock of coconut shell waste for producing biochar and liquid smoke using slow pyrolysis. The temperature used was varied between 250 °C to 450 °C at a constant heating rate of 10 °C/min and at a holding time of about 120 minutes. Gravimetry, spectro, and high-performance liquid chromatography (HPLC) methods are used to identify the liquid smoke for density, phenol, and acetic acid content respectively. The results indicated that increased pyrolysis temperatures caused a reduced biochar yield. However, the liquid smoke yield was found to increase with the temperature. The obtained liquid smoke has a density of 1.054 g/mL and has a content of phenol of about 4717.91 mg GAE/100 mg, and acetic acid of 11.36%. Results inferred that the liquid smoke can be generated from a large size of coconut shell through pyrolysis at medium temperature.
Słowa kluczowe
Twórcy
  • Mechanical Engineering Department, Universitas Negeri Medan, Medan 20221, North Sumatera, Indonesia
  • Mechanical Engineering Department, Universitas Negeri Medan, Medan 20221, North Sumatera, Indonesia
  • Mechanical Engineering Department, Universitas Negeri Medan, Medan 20221, North Sumatera, Indonesia
  • Sekolah Tinggi Keguruan dan Ilmu Pendidikan Al Maksum, Jl. Sei Batang Serangan, No. 4. Kwala Bingai, Kota Stabat, Kabupten Langkat, North Sumatera, Indonesia
Bibliografia
  • 1. Adinda, R.F., Faisal, M., Djuned, F.M., 2023. Characteristics of liquid smoke from young coconut shells at various pyrolysis temperature. Elkawnie: Journal of Islamic Science and Technology, 9(1), 24–36. http://dx.doi.org/10.22373/ekw.v9i1.14225
  • 2. Ahmad, R.K., Sulaiman, S.A., Yusuf, S.B., Dol, S.S., Umar, H.A., Inayat, M. 2020. The influence of pyrolysis process conditions on the quality of coconut shells charcoal. Platform: A Journal of Engineering, 4(1), 73-81. https://doi.org/10.61762/pajevol4iss1art7663
  • 3. Akhtar, N., Syakir Ishak, M.I., Bhawani, S.A., Umar, K. 2021. Various natural and anthropogenic factors responsible for water quality degradation: a review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660
  • 4. Aladin, A., Yani, S., Modding, B., Wiyani, L., 2018, July. Pyrolisis of corncob waste to produce liquid smoke. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 175(1), 012020. https://doi.10.1088/1755-1315/175/1/012020
  • 5. Alouw, J.C., Wulandari, S. 2020. Present status and outlook of coconut development in Indonesia. IOP Conference Series: Earth and Environmental Science, 418(1), 012035. https://doi.org/10.1088/1755-1315/418/1/012035
  • 6. Baharuddin, Simanjuntak, J.P., Daryanto, E., Tambunan, B.H., Hasan, H., Anis, S., Syamsiro, M. 2022. Development of a small-scale electricity generation plant integrated on biomass carbonization: thermodynamic and thermal operating parameters study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 94(1), 79–95. https://doi.org/10.37934/arfmts.94.1.7995
  • 7. Bhattacharyya, R., Ghosh, B., Mishra, P., Mandal, B., Rao, C., Sarkar, D., Das, K., Anil, K., Lalitha, M., Hati, K., Franzluebbers, A. 2015. Soil degradation in india: challenges and potential solutions. Sustainability, 7(4), 3528–3570. https://doi.org/10.3390/su7043528
  • 8. Chan, A.A., Buthiyappan, A., Raman, A.A.A., Ibrahim, S. 2022. Recent advances on the coconut shell derived carbonaceous material for the removal of recalcitrant pollutants: a review. Korean Journal of Chemical Engineering, 39(10), 2571–2593. https://doi.org/10.1007/s11814-022-1201-5
  • 9. Dauber, J., Jones, M.B., Stout, J.C. 2010. The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy, 2(6), 289–309. https://doi.org/10.1111/j.1757-1707.2010.01058.x
  • 10. Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248. https://doi.org/10.1016/j.jaap.2004.07.003
  • 11. Demirbas, A. 2007. Hazardous emissions from combustion of biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(2), 170– 178. https://doi.org/10.1080/00908310600712406
  • 12. Dewi, F.C., Tuhuteru, S., Aladin, A., Setiyawati, Y.A.N.I., Lestari, R.H.S., Subrata, B.A.G., 2022. Liquid smoke of red fruit (Pandanus Conoideus. L.) waste with pyrolysis method for controlling sweet potatoes (Ipomea Batatas. L.) Pest. International Journal of Environmental, Sustainability, and Social Science, 3(1), 109–115. https://doi.org/10.38142/ijesss.v3i1.168
  • 13. Diptaningsari, D., Meithasari, D., Karyati, H., Wardani, N. 2022. Potential Use of Coconut Shell Liquid smoke as an insecticide on soybean and the impact on agronomic performance. IOP Conference Series: Earth and Environmental Science, 985(1), 012058. https://doi.org/10.1088/1755-1315/985/1/012058
  • 14. Faisal, M., Yelvia Sunarti, A.R., Desvita, H. 2018. Characteristics of liquid smoke from the pyrolysis of durian peel waste at moderate temperatures. Rasayan J Chem, 11(2), 871–876. http://dx.doi.org/10.7324/RJC.2018.1123035
  • 15. Ganapathy Sundaram, E., Natarajan, E. 2009. Pyrolysis of coconut shell: an experimental investigation. The Journal of Engineering Research [TJER], 6(2), 33. https://doi.org/10.24200/tjer.vol6iss2pp33-39
  • 16. Gao, Y., Yang, Y., Qin, Z., Sun, Y. 2016. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. SpringerPlus, 5(1), 333. https://doi.org/10.1186/s40064-016-1974-2
  • 17. Gunasekar, N., Mohan, C.G., Prakash, R., Saravana Kumar, L. 2021. Utilization of coconut shell pyrolysis oil diesel blends in a direct injection diesel engine. Materials Today: Proceedings, 45, 713–717. https://doi.org/10.1016/j.matpr.2020.02.744
  • 18. Hasan, H., Gunawan, S., Silaban, R., Sinaga, F.I.S.H., Simanjuntak, J.P. 2022. An experimental study of liquid smoke and charcoal production from coconut shell by using a stove of indirect burning type. Journal of Physics: Conference Series, 2193(1), 012088. https://doi.org/10.1088/1742-6596/2193/1/012088
  • 19. Hossain, A.K., Davies, P.A. 2013. Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review. Renewable and Sustainable Energy Reviews, 21, 165–189. https://doi.org/10.1016/j.rser.2012.12.031
  • 20. Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., Malamakis, A. 2010. Waste biomass-to-energy supply chain management: a critical synthesis. Waste Management, 30(10), 1860–1870. https://doi.org/10.1016/j.wasman.2010.02.030
  • 21. Jahiding, M., Ilmawati, W.O.S., Arsyad, J., Riskayanti, S.S. 2017, May. Characterization of coconut shell liquid volatile matter (CS-LVM) by using gas chromatography. In Journal of Physics: Conference Series, 846(1), 012025. IOP Publishing. https://doi:10.1088/1742-6596/846/1/012025
  • 22. Kailaku, S., Syakir, M., Mulyawanti, I., Syah, A. 2017. Antimicrobial activity of coconut shell liquid smoke. IOP Conference Series: Materials Science and Engineering, 206, 012050. https://doi.org/10.1088/1757-899X/206/1/012050
  • 23. Kan, T., Strezov, V., Evans, T.J. 2016a. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185
  • 24. Kan, T., Strezov, V., Evans, T.J. 2016b. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185
  • 25. Liu, W.-J., Jiang, H., Yu, H.-Q. 2015. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews, 115(22), 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
  • 26. Luo, S., Xiao, B., Hu, Z., Liu, S. 2010. Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. International Journal of Hydrogen Energy, 35(1), 93–97. https://doi.org/10.1016/j.ijhydene.2009.10.048
  • 27. Mulyawanti, I., Kailaku, S.I., Syah, A.N.A., Risfaheri. 2019. Chemical Identification of Coconut Shell Liquid Smoke. IOP Conference Series: Earth and Environmental Science, 309(1), 012020. https://doi.org/10.1088/1755-1315/309/1/012020
  • 28. Nurfadhila, S., Hambali, E. 2022. Liquid Smoke from coconut shell pyrolysis process on palm surfactant based liquid hand soap. International Journal of Oil Palm, 5(2), 50–57. https://doi.org/10.35876/ijop.v5i2.71
  • 29. Rizal, W.A., Nisa’, K., Maryana, R., Prasetyo, D.J., Pratiwi, D., Jatmiko, T.H., Ariani, D., Suwanto, A. 2020. Chemical composition of liquid smoke from coconut shell waste produced by SME in Rongkop Gunungkidul. IOP Conference Series: Earth and Environmental Science, 462(1), 012057. https://doi.org/10.1088/1755-1315/462/1/012057
  • 30. Rout, T., Pradhan, D., Singh, R.K., Kumari, N. 2016. Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4(3), 3696–3705. https://doi.org/10.1016/j.jece.2016.02.024
  • 31. Roy, Y., Lefsrud, M., Orsat, V., Filion, F., Bouchard, J., Nguyen, Q., Dion, L.-M., Glover, A., Madadian, E., Lee, C.P. 2014. Biomass combustion for greenhouse carbon dioxide enrichment. Biomass and Bioenergy, 66, 186–196. https://doi.org/10.1016/j.biombioe.2014.03.001
  • 32. Sari, E., Khatab, U., Burmawi, Rahman, E.D., Afriza, F., Maulidita, A., Desti, V. 2019. Production of Liquid Smoke From the Process of Carbonization of Durian Skin Biomass, Coconut Shell and Palm Shell for Preservation of Tilapia Fish. IOP Conference Series: Materials Science and Engineering, 543(1), 012075. https://doi.org/10.1088/1757-899X/543/1/012075
  • 33. Sarkar, J.K., Wang, Q. 2020. Different pyrolysis process conditions of south asian waste coconut shell and characterization of gas, bio-char, and biooil. Energies, 13(8), 1970. https://doi.org/10.3390/en13081970
  • 34. Sarker, Md.S.A., Tusar, M.H., Salam, B., Prince, K.G.M. 2018. Investigation on pyrolysis of coconut shell for bio-oil production using infrared heat source, 060003. https://doi.org/10.1063/1.5044371
  • 35. Septien, S., Valin, S., Dupont, C., Peyrot, M., Salvador, S. 2012. Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000–1400°C). Fuel, 97, 202–210. https://doi.org/10.1016/j.fuel.2012.01.049
  • 36. Simanjuntak, J.P., Daryanto, E., Tambunan, B.H. 2022, February. An operating parameter study of the biomass solid feedstock incinerator of fixed-bed type with two-stage air supply. In Journal of Physics: Conference Series. IOP Publishing, 2193(1), 012077. https://doi.org/10.1088/1742-6596/2193/1/012077
  • 37. Singh, P., Dubey, P., Younis, K., Yousuf, O. 2024. A review on the valorization of coconut shell waste. Biomass Conversion and Biorefinery, 14(7), 8115– 8125. https://doi.org/10.1007/s13399-022-03001-2
  • 38. Suriapparao, D.V., Vinu, R. 2018. Effects of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution. Waste and Biomass Valorization, 9(3), 465–477. https://doi.org/10.1007/s12649-016-9815-7
  • 39. Swandewi, K.R., Diah Kencana, P.K., Yulianti, N.L. 2019. Karakteristik Asap Cair Batang Bambu Tabah (Gigantochloa nigrociliata BUSE-KURZ) Hasil Destilasi pada Suhu yang Berbeda. J BETA (Biosistem dan Teknik Pertanian), 8(1), 152-7. https://dx.doi.org/10.24843/jbeta.2019.v07.i02.p07
  • 40. Zhang, Y., Chen, P., Liu, S., Peng, P., Min, M., Cheng, Y., Anderson, E., Zhou, N., Fan, L., Liu, C., Chen, G., Liu, Y., Lei, H., Li, B., Ruan, R. 2017a. Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresource Technology, 230, 143–151. https://doi.org/10.1016/j.biortech.2017.01.046
  • 41. Zhang, Y., Chen, P., Liu, S., Peng, P., Min, M., Cheng, Y., Anderson, E., Zhou, N., Fan, L., Liu, C., Chen, G., Liu, Y., Lei, H., Li, B., Ruan, R. 2017b. Effects of feedstock characteristics on microwaveassisted pyrolysis – A review. Bioresource Technology, 230, 143–151. https://doi.org/10.1016/j.biortech.2017.01.046
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29b849d9-fdaf-4061-bc52-c5edcf9a4919
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.