PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved dynamic surface sliding mode method for autonomous cooperative formation control of underactuated USVS with complex marine environment disturbances

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel dynamic surface sliding mode control (DSSMC) method, combined with a lateral velocity tracking differentiator (LVTD), is proposed for the cooperative formation control of underactuated unmanned surface vehicles (USVs) exposed to complex marine environment disturbances. Firstly, in view of the kinematic and dynamic models of USVs and the design idea of a virtual control law in a backstepping approach, the trajectory tracking control problem of USVs’ cooperative formation is transformed into a stabilisation problem of the virtual control law of longitudinal and lateral velocities. Then, aiming at the problem of differential explosion caused by repeated derivation in the process of backstepping design, the first-order low-pass filter about the virtual longitudinal velocity and intermediate state quantity of position is constructed to replace differential calculations during the design of the control law, respectively. In order to reduce the steady-state error when stabilising the virtual lateral velocity control law, the integral term is introduced into the design of the sliding mode surface with a lateral velocity error, and then the second-order sliding mode surface with an integral is structured. In addition, due to the problem of controller oscillation and the role of the tracking differentiator (TD) in active disturbance rejection control (ADRC), the LVTD is designed to smooth the state quantity of lateral velocity. Subsequently, based on the dynamic model of USV under complex marine environment disturbances, the nonlinear disturbance observer is designed to observe the disturbances and compensate the control law. Finally, the whole cooperative formation system is proved to be uniformly and ultimately bounded, according to the Lyapunov stability theory, and the stability and validity of the method is also verified by the simulation results.
Rocznik
Tom
Strony
47--60
Opis fizyczny
Bibliogr, 37 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan
  • Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, China
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan China
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan
  • School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan China
Bibliografia
  • 1. P.N.N. Thanh, P.M. Tom and H.P.H. Anh, ‘A new approach for three-dimensional trajectory tracking control of under-actuated AUVs with model uncertainties,’ Ocean Engineering, vol. 228, pp. 1-17, May. 2021. doi:10.1016/j. oceaneng.2021.108951.
  • 2. P.J.B. Sanchez, F.P.G. Marquez, S. Govindara, A. But, B. Sportich, S. Marini, V. Jantara and M. Papaelias, ‘Use of UIoT for offshore surveys through autonomous vehicles,’ Polish Maritime Research, vol. 28, no. 3, pp. 175-189, Oct. 2021. doi:10.2478/pomr-2021-0044.
  • 3. X.Y. Zhou, P. Wu, H.F. Zhang, W.H. Guo and Y.C.Liu, ‘Learn to Navigate: Cooperative path planning for unmanned surface vehicles using deep reinforcement learning,’ IEEE Access, vol. 7, pp. 165262-165278, Feb. 2019. doi:10.1109/ ACCESS.2019.2953326.
  • 4. H.B. Huang, M. Gong, Y.F. Zhuang, S. Sharma and D.G.Xu, ‘A new guidance law for trajectory tracking of an underactuated unmanned surface vehicle with parameter perturbations,’ Ocean Engineering, vol. 175, pp. 217-222, Mar. 2019. doi:10.1016/j.oceaneng. 2019.02.042.
  • 5. L.G. Li, Z.Y. Pei, J.C. Jin and Y.S. Dai, ‘Control of unmanned surface vehicle along the desired trajectory using improved line of sight and estimated sideslip angle,’ Polish Maritime Research, vol. 28, no. 2, pp. 18-26, Jul. 2021. doi:10.2478/ pomr-2021-0017.
  • 6. S.S. Wang and Y.L. Tuo, ‘Robust trajectory tracking control of underactuated surface vehicles with prescribed performance,’ Polish Maritime Research, vol. 17, no. 4, pp. 148-156, Dec. 2020. doi:10.2478/pomr-2020-0075.
  • 7. A. Stateczny and P. Burdziakowski, ‘Universal autonomous control and management system for multipurpose unmanned surface vessel,’ Polish Maritime Research, vol. 26, no. 1, pp. 30-39, Apr. 2019. doi:10.2478/pomr-2019-0004.
  • 8. Z.P. Dong, Y. Liu, H. Wang and T. Qin, ‘Method of cooperative formation control for underactuated USVs based on nonlinear backstepping and cascade system theory,’ Polish Maritime Research, vol. 28, no. 1, pp. 149- 162, Mar. 2021. doi:10.2478/pomr-2021-0014.
  • 9. J.A. Gonzalez-Prieto, C. Perez-Collazo and Y. Singh, ‘Adaptive integral sliding mode based course keeping control of unmanned surface vehicle,’ Journal of Marine Science and Engineering, vol. 10, no. 1, pp. 1-20, Jan. 2022. doi:10.3390/jmse10010068.
  • 10. J.Y. Zhuang, L. Zhang, Z.H. Qin, H.B. Sun, B. Wang and J. Cao, ‘Motion control and collision avoidance algorithm for unmanned surface vehicle swarm in practical maritime environment,’ Polish Maritime Research, vol. 26, no. 1, pp.107−116, Apr. 2019. doi:10.2478/ pomr-2019-0012.
  • 11. R.L. Miao, L.X. Wang and S. Pang, ‘Coordination of distributed unmanned surface vehicles via model-based reinforcement learning methods,’ Applied Ocean Research, vol. 122, pp. 1-15, May. 2022. doi:10.1016/j.apor.2022.103106.
  • 12. L. Rowinski and M. Kaczmarczyk, ‘Evaluation of effectiveness of waterjet propulsor for a small underwater vehicle,’ Polish Maritime Research, vol. 28, no. 4, pp. 30-41, Jan. 2022. doi: 10.2478/pomr-2021-0047.
  • 13. G.G. Tan, J. Zou, J.Y. Zhuang, L. Wan, H.B. Sun and Z.Y. Sun, ‘Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters,’ Applied Ocean Research, vol. 95, pp. 1-15, Feb. 2020. doi:10.1016/j.apor.2019.102018.
  • 14. H.N. Esfahani and R. Szlapczynski, ‘Model predictive super-twisting sliding mode control for an autonomous surface vehicle,’ Polish Maritime Research, vol. 26, no. 3, pp. 163−171, Sept. 2019. doi:10.2478/pomr-2019-0057.
  • 15. X.L. Jiang and G.H. Xia, ‘Sliding mode formation control of leaderless unmanned surface vehicles with environmental disturbances,’ Ocean Engineering, vol. 244, pp. 1-9, Jan. 2022. doi:10.1016/j.oceaneng. 2021.110301.
  • 16. K. Shojaei, ‘Observer-based neural adaptive formation control of autonomous surface vessels with limited torque,’ Robotics and Autonomous Systems, vol. 78, pp. 83-96, Apr. 2016. doi: 10.1016/j.robot.2016.01.005.
  • 17. J. Ghommam and M. Saad, ‘Adaptive leader-follower formation control of underactuated surface vessels under asymmetric range and bearing constraints,’ IEEE Transactions on Vehicular Technology, vol. 67, no. 2, pp. 852-865, Feb. 2018. doi:10.1109/TVT.2017.2760367.
  • 18. D.S. Wang and M.Y. Fu, ‘Adaptive formation control for waterjet USV with input and output constraints based on bioinspired neurodynamics,’ IEEE Access, vol. 7, pp. 165852- 165861, Dec. 2019. doi:10.1109/ACCESS.2019.2953563.
  • 19. S.W. Wang, F. Ma, X.P. Yan, P. Wu and Y.C. Liu, ‘Adaptive and extendable control of unmanned surface vehicle formations using distributed deep reinforcement learning,’ Applied Ocean Research, vol. 110, pp. 1-28, May. 2021. doi:10.1016/j.apor.2021.102590.
  • 20. L.Y. Chen, H. Hopman and R.R. Negenborn, ‘Distributed model predictive control for vessel train formations of cooperative multi-vessel systems,’ Transportation Research Part C-Emerging Technologies, vol. 92, pp. 101-118, Jul. 2018. doi:10.1016/j.trc.2018.04.013.
  • 21. M.Y. Fu and L.L. Yu, ‘Finite-time extended state observerbased distributed formation control for marine surface vehicles with input saturation and disturbances,’ Ocean Engineering, vol. 159, pp. 219-227, Jul. 2018. doi:10.1016/j. oceaneng.2018.04.016.
  • 22. B. Huang, S. Song, C. Zhu, J. Li and B. Zhou, ‘Finitetime distributed formation control for multiple unmanned surface vehicles with input saturation,’ Ocean Engineering, vol. 233, pp. 1-14, Aug. 2021. doi:10.1016/j. oceaneng.2021.109158.
  • 23. S.L. Dai, S.D. He, H. Lin and C. Wang, ‘Platoon formation control with prescribed performance guarantees for USVs,’ IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4237-4246, May. 2018. doi:10.1109/TIE.2017.2758743.
  • 24. J. Ghommam, M. Saad, F. Mnif and Q.M. Zhu, ‘Guaranteed performance design for formation tracking and collision avoidance of multiple USVs with disturbances and unmodeled dynamics,’ IEEE Systems Journal, vol. 15, no. 3, pp. 4346-4357, Sep. 2021. doi:10.1109/ JSYST.2020.3019169.
  • 25. X. Jin, ‘Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints,’ Automatica, vol. 68, pp. 228-236, Jun. 2016. doi:10.1016/j.automatica.2016.01.064.
  • 26. Y. Lu, G.Q. Zhang, Z.J. Sun and W.D. Zhang, ‘Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB,’ Nonlinear Dynamics, vol. 94, no. 1, pp. 503-519, Oct. 2018. doi:10.1007/ s11071-018-4374-z.
  • 27. B.S. Park and S.J. Yoo, ‘Adaptive-observer-based formation tracking of networked uncertain underactuated surface vessels with connectivity preservation and collision avoidance,’ Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 356, no. 15, pp. 7947-7966, Oct. 2019. doi:10.1016/ j.jfranklin.2019.04.017.
  • 28. H.N. Esfahani, R. Szlapczynski and H. Ghaemi, ‘High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADPBased adaptive gains and time delay estimation,’ Ocean Engineering, vol. 191, pp. 1-19, Nov. 2019. doi: 10.1016/j. oceaneng.2019.106526.
  • 29. K. Xue and T.Y. Wu, ‘Distributed consensus of USVs under heterogeneous UAV-USV multi-agent systems cooperative control scheme,’ Journal of Marine Science and Engineering, vol. 9, no. 11, pp. 1-20, Nov. 2021. doi:10.3390/ jmse9111314.
  • 30. S.J. Yoo and B.S. Park, ‘Guaranteed-connectivity-based distributed robust event-triggered tracking of multiple underactuated surface vessels with uncertain nonlinear dynamics,’ Nonlinear Dynamics, vol. 99, no. 3, pp. 2233- 2249, Feb. 2020. doi:10.1007/s11071-019- 05432-5.
  • 31. B.S. Park and S.J. Yoo, ‘Connectivity-maintaining and collision-avoiding performance function approach for robust leader–follower formation control of multiple uncertain underactuated surface vessels,’ Automatica, vol. 127, pp. 1-10, May. 2021. doi:10.1016/ j.automatica.2021.109501.
  • 32. H.C. Lamraoui and Q.D. Zhu, ‘Path following control of fully actuated Autonomous underwater vehicle based on LADRC,’ Polish Maritime Research, vol. 25, no. 4, pp. 39-48, Dec. 2018. doi:10.2478/pomr-2018-0130.
  • 33. M. Tomera and K. Podgorski, ‘Control of dynamic positioning system with disturbance observer for autonomous marine surface vessels,’ Sensors, vol. 21, no. 20, pp. 1-24, Oct. 2021. doi.org/10.3390/s21206723.
  • 34. T. Perez and T.I. Fossen, ‘Kinematic models for maneuvering and sea keeping of marine vessels,’ Modeling, Identification and Control, vol. 28, no. 1, pp. 19-30, Jan. 2007. doi: 10.4173/ mic.2007.1.3.
  • 35. W.H. Chen, ‘Disturbance observer based control for nonlinear systems,’ IEEE-ASME Transactions on Mechatronics, vol. 9, no. 4, pp. 706-710, Dec. 2004. doi:10.1109/TMECH. 2004.839034.
  • 36. J.Q. Han, ‘From PID to active disturbance rejection control,’ IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, Mar. 2009. doi:10.1109/TIE.2008.2011621.
  • 37. K.D. Do and J. Pan, ‘Global robust adaptive path following of underactuated ships,’ Automatic, vol. 42, no. 10, pp. 1713-1722, Oct. 2006. doi:10.1016/j.automatica.2006.04.026.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29b80916-06c9-4454-b293-646dc6562cae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.