PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The possibility of using wood fiber mats in products manufacturing made of polymer composites based on numerical simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work the calculations for predicting the properties of wood fiber mats – polyester resin composite using numerical homogenization method were performed. For this purpose, the microstructural strength properties were calculated using DIGIMAT FE commercial code. In addition, for com-parative purposes a calculation of polyester resin – glass fiber composites was conducted. This allowed to compare the properties of two types of com-positions. In addition, the obtained strength properties were used to simulate the work of product made of these composites. This study was performed using the Ansys commercial code. Usability of the polyester resin – wood fiber mat composite and knowledge of its properties will allow to find a correct application of this composite type and can provide an alternative way to other polymeric resin reinforced by mat.
Rocznik
Strony
65--75
Opis fizyczny
Bibliogr. 19 poz., fig., tab.
Twórcy
autor
  • Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, Department of Materials Forming and Processing, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Abdulle, A. (2013). Numerical homogenization methods (No. EPFL-ARTICLE-184958).
  • 2. Autodesk Moldflow Insight (2013) – material database.
  • 3. Aziz, S. H., Ansell, M. P., Clarke, S. J., & Panteny, S. R. (2005). Modified polyester resins for natural fibre composites, Composites Science and Technology, 65, 525–535. doi:10.1016/ j.compscitech.2004.08.005
  • 4. Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197–224. doi: 10.1016/0045-7825(88)90086-2
  • 5. Campilho, R.D.S.G. (2015). Natural Fiber Composites. Boca Raton: CRC Press.
  • 6. Doghri, I., & Tinel, L. (2006). Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Computer methods in applied mechanics and engineering, 195(13), 1387–1406. doi: 10.1016/j.cma.2005.05.041
  • 7. Dominguez, R. J., & Rice, D. M. (1983). High strength continuous glass strand – polyurethane composites by the reaction injection molding process. Polymer composites, 4, 185–189. doi: 10.1002/pc.750040310
  • 8. e-Xstream engineering (2016). DIGIMAT - User’s manual, MSC Software Belgium SA, Mont-Saint-Guibert.
  • 9. Frącz, W., Janowski, G., & Ryzińska, G. (2017). The strenght analysis of GFRP composite product taking into account its heterogenic structure for different reinforcements. Composites Theory and Practice, 2, 103-108.
  • 10. Hedley, C. W. (1994). Mold filling parameters in resin transfer molding of composites (doctoral dissertation). Bozeman: Montana State University.
  • 11. Ho, M., Wang, H., Lee, J., Ho, C., Lau K., Leng J., & Hui, D. (2011). Critical factors on manu-facturing processes of natural fibre composites. Composites: Part B, 43, 3549-3562. doi: 10.1016/j.compositesb.2011.10.001
  • 12. Kim, D. S., & Macosko, C. W. (2000). Reaction injection molding process of glass fiber reinforced polyurethane composites. Polymer Engineering & Science, 40(10), 2205–2216. doi: 10.1002/ pen.11352
  • 13. Klyosov, A. A. (2007). Wood-Plastic Composites. New Jersey: John Wiley & Sons.
  • 14. Kubit, A., Bucior, M., & Zielecki, W. (2016). The impact of the multiwall carbon nanotubes on the fatigue properties of adhesive joints of 2024-T3 aluminium alloy subjected to peel. Procedia Structural Integrity, 2, 334–341. doi: 10.1016/j.prostr.2016.06.043
  • 15. Kutnar, A., & Muthu S. S. (2016). Environmental Impacts of Traditional and Innovative Forest-based Bioproducts, Environmental Footprints and Eco-design of Products and Processes, Singapore: Springer.
  • 16. Rowell, R. M. (2013). Handbook of Wood Chemistry and Wood Composites, Second Edition. Boca Raton: CRC Press.
  • 17. Thakur, V. K., & Thakur, M. K. (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117, doi: 10.1016/ j.carbpol.2014.03.039
  • 18. Trevino, L., Rupel, K., Young, W. B., Liou, M. J., & Lee, L. J. (1991). Analysis of resin injection molding in molds with preplaced fiber mats. I: Permeability and compressibility measurements. Polymer composites, 12, 20–29. doi: 10.1002/pc.750120105
  • 19. Zielecki, W., Kubit, A., Kluz, R., & Trzepieciński, T. (2017). Investigating the influence of the chamfer and fillet on the high-cyclic fatigue strength of adhesive joints of steel parts. Journal of Adhesion Science and Technology, 31(6), 627–644. doi: 10.1080/01694243.2016.1229521
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29b7fe2e-cafb-4cf7-a2b5-363ee77d04d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.