Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper gives the results of mathematical modeling and experimental studies of the processes of formation and fragmentation of the liquid layer and formation of powder particles in plasma-arc atomization of current-conducting solid stainless steel AISI 316L wire and flux-cored Fe-Al wire. Mathematical modeling showed that initial fragments of size d0 = 670–780 μm form at plasma-arc atomization of the above-mentioned wires, where after their separation from the tip of the atomized wire their multiple disintegration in the plasma jet takes place, which ends at the distance of ~ 120 mm with formation of fine spherical fragments (powders) with the average diameter of 105–125 μm. Experimental studies on determination of the initial size of the drops, forming at metal drop separation from the liquid layer, using high-speed filming, showed that their size is d0 = 720–815 μm, and size of atomization products (powder) determined using the sieve analysis method are equal to 119–142 μm. Comparison of the obtained experimental and calculated data showed that that for atomization of both the solid stainless steel AISI 316L wire and flux-cored wire of Fe-Al system the main fraction of powder particles is 1–300 μm, which makes up 96–99 wt. % in both the cases, the error between the theoretical and experimental data being not higher than 7–32 %, depending on powder fraction, allowing application of the mentioned mathematical complex model to determine the optimal modes of plasma-arc atomization process with a wide range of wire materials. The study of the shape parameters and structure of AISI 316L and Fe-Al powders showed that most of the particles have a regular spherical shape with a sphericity coefficient close to 0.8–0.9, the microstructure of which is characterized by the absence of pores and voids.
Wydawca
Rocznik
Tom
Strony
58--72
Opis fizyczny
Bibliogr. 69 poz., fig.
Twórcy
autor
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing: 363, Changxing Road, Tianhe, Guangzhou, 510650, China
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
autor
- E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 11 Kazymyr Malevych St., 03150 Kyiv, Ukraine
Bibliografia
- 1. Nguyen H., Pramanik A., Basak A. et al. A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties. Journal of Materials Research and Technology. 2022. (18), 4641–4661. https://doi.org/10.1016/j. jmrt.2022.04.055
- 2. Ahn D. Directed energy deposition (DED) process: State of the art. Int. J. of Precis. Eng. And Manuf.-Green Tech. 2021. (8), 703-742. https://doi. org/10.1007/s40684-020-00302-7
- 3. Svetlizky D., Das M., Zheng B. et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today. 2021. (49), 271–295. https://doi.org/10.1016/j.mattod.2021.03.020
- 4. King W., Anderson A., Ferencz R. et al. Laser powder bed fusion additive manufacturing of metals;physics, computational, and materials challenges. Applied Physics Reviews. 2015. (2), 041304. https://doi.org/10.1063/1.4937809
- 5. Fatemeh A, Haydari Z., Salehi H. et al. Spreadability of powders for additive manufacturing: A critical review of metrics and characterization methods. 2024. Particuology. (93), 211–234. https://doi. org/10.1016/j.partic.2024.06.013
- 6. Olakanmi E. Selective laser sintering/melting (SLS/ SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder proper- ties. Journal of Materials Processing Technology. 2013. (213), 1387–1405. https://doi.org/10.1016/j. jmatprotec.2013.03.009
- 7. Attar H., Prashanth K., Zhang L. et al. Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. Journal of Materials Science & Technology. 2015. (31), 1001–1005. https://doi. org/10.1016/j.jmst.2015.08.007
- 8. Drawin S., Deborde A., Thomas M. et al. Atomization of Ti-64 alloy using the EIGA process: comparison of the characteristics of powders produced in labscale and industrial-scale facilities. MATEC Web of Conferences 2020. (321), 07013. https://doi. org/10.1051/matecconf/202032107013
- 9. Xiao H., Gao B., Yu S. et al. Life cycle assessment of metal powder production: a Bayesian sto- chastic Kriging model-based autonomous estimation. Auton. Intell. Syst. 2024. (4), 20. https://doi. org/10.1007/s43684-024-00079-5
- 10. Chen G., Zhao S., Tan P. et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technology. 2018. (333), 38–46. https://doi.org/10.1016/j. powtec.2018.04.013
- 11. Sun P., Fang Z., Zhang Y. et al. Review of the methods for the production of spherical Ti and Ti alloy powder. JOM. 2017. (69), 1853–1860. https://doi. org/10.1007/s11837-017-2513-5
- 12. Korzhyk V., Strohonov D., Burlachenko O. et al. Development of plasma-arc technologies of spherical granule production for additive manufacturing and granule metallurgy. The Paton Welding J. 2023. (12), 3–18. https://doi.org/10.37434/tpwj2023.12.01
- 13. Yurtukan E., Unal R. Theoretical and experimental investigation of Ti alloy powder production using low-power plasma torches. Transactions of Nonferrous Metals Society of China. 2022. (32), 175-191. https://doi.org/10.1016/S1003-6326(21)65786-2
- 14. Zhao Y., Cui Y., Numata H. et al. Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process. Sci Rep. 2020. (10), 18446. https://doi.org/10.1038/ s41598-020-75503-w
- 15. Cui Y., Zhao Y., Numata H. et al. Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V al- loy powder. Powder Technology. 2020. (376), 363– 372. https://doi.org/10.1016/j.powtec.2020.08.027
- 16. Cui Y., Zhao Y., Numata H. et al. Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process. Powder Technology. 2021. (393), 301–311. https://doi. org/10.1016/j.powtec.2021.07.0624
- 17. Han Z., Zhang P., Lei L. et al. Morphology and particle analysis of the Ni3Al-based spherical powders manufactured by supreme-speed plasma rotating electrode process. Journal of Materials Research and Technology. 2020. 6(9), 13937–13944. https:// doi.org/10.1016/j.jmrt.2020.09.102
- 18. Zhang Y., Song M., Li Y. et al. Effect of preparation process on the microstructure and characteristics of TiAl pre-alloyed powder fabricated by plasma rotating electrode process. Crystals. 2024. (14), 562. https://doi.org/10.3390/cryst14060562
- 19. Korzhyk V., Kulak L., Shevchenko V. et al. New equipment for production of super hard spherical tungsten carbide and other high-melting compounds using the method of plasma atomization of rotating billet. Materials Science Forum. 2017. (898), 1485–1497. https://doi.org/10.4028/www.scientific. net/msf.898.1485
- 20. Qiu J., Yu D., Qu Y. et al. In-flight droplet plasma atomization: A novel method for preparing ultrafine spherical powders. Advanced Powder Technology. 2025. 1(36), 104757. https://doi.org/10.1016/j. apt.2024.104757
- 21. Zhang Q., Yu D., Liu F. et al. Modeling on the size of the pre-breaking molten droplet in plasma atomization for controlling the size of the produced powders. Applied Thermal Engineering 2023. (232), 121031. https://doi.org/10.1016/j. applthermaleng.2023.121031
- 22. Bobzin K., Wietheger W., Burbaum E. et al. High-velocity arc spraying of fe-based metallic glasses with high si content. J Therm Spray Tech. 2022. (31), 2219–2228. https://doi.org/10.1007/ s11666-022-01433-w
- 23. Yin Z., Yu D., Zhang Q. et al. Experimental and numerical analysis of a reverse-polarity plasma torch for plasma atomization. Plasma Chem Plasma Process. 2021. (41), 1471–1495 https://doi. org/10.1007/s11090-021-10181-8
- 24. Ozerskoi N., Silin A., Razumov N. et al. Optimization of EI961 steel spheroidization process for subsequent use in additive manufacturing: Effect of plasma treatment on the properties of EI961 powder. Reviews Adv. Mater. Sci. 2021. 60(1), 936–945. https://doi.org/10.1515/rams-2021-0078
- 25. Lagutkin S., Achelis L., Sheikhaliev S., Uhlenwinkel V., Srivastava V. Atomization process for metal powder. Mater. Sci. Eng.: A. 2004. 383(1), 1–6. https://doi.org/10.1016/j.msea.2004.02.059
- 26. Gu Y., Xu Y., Shi Y., Feng C., Volodymyr K. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology. 2022. (441), 128534. https://doi.org/10.1016/j. surfcoat.2022.128534
- 27. Korzhyk V., Khaskin V., Grynyuk A. et al. Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium. Eastern-European Journal of Enterprise Technologies. 2021. 12(112), 6–17. https://doi.org/10.15587/1729-4061.2021.238634
- 28. Chen G., Zhao S., Tan P. et al. A comparative study of Ti–6Al–4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018. (333), 38–46. https://doi.org/10.1016/j. powtec.2018.04.013
- 29. Dharmanto A., Sugeng S., Supriadi B. New design of conduit plasma atomization for fabricating spherical metal powder and its optimization using design of experiments method. Powder Metall. Met. Ceram. 2022. (60), 531–545. https://doi.org/ s11106-022-00266-0
- 30. Fialko N., Prokopov V., Meranova, N. et al. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. Fizika i Khimiya Obrabotki Materialov. 1994. (2), 59‒67.
- 31. Korzhik V. Theoretical analysis of the conditions required for rendering metallic alloys amorphous during gas-thermal spraying. III. Transformations in the amorphous layer during the growth process of the coating. Powder Metall. Met. Ceram. 1992. 31(11), 943‒948. https://doi.org/10.1007/BF00797621
- 32. Kharlamov M., Krivtsun I., Korzhyk V. Dynamic Model of the Wire Dispersion Process in PlasmaArc Spraying. Journal of Thermal Spray Technology. 2014. (23), 420–430. https://doi.org/10.1007/ s11666-013-0027-4
- 33. Li H., Chen X. Three-dimensional simulation of a plasma jet with transverse particle and carrier gas injection. Thin Solid Films. 2001. (390), 175–180. https://doi.org/10.1016/S0040-6090(01)00915-4
- 34. Remesh K., Yu S., Ng H. et al. Computational study and experimental comparison of the inflight particle behavior for an external injection plasma spray process. Journal of Thermal Spray Technology. 2003. 12(4), 508–522. https://doi. org/10.1361/105996303772082251
- 35. Michaelides E. Particles, bubbles and drops: Their motion, heat and mass transfer. World Scientific Publ. 2006. 424. https://doi.org/10.1142/6018
- 36. Guildenbecher D., Lopez-Rivera C., Sojka P. Secondary atomization. Exp. Fluids. 2009. 46(3), 371– 402. https://doi.org/10.1007/s00348-008-0593-2
- 37. Mariaux G., Vardelle A. 3-D time-dependent modeling of the plasma spray process. Part 1: flow modeling. International Journal of Thermal Sciences. 2005. (44), 357–366. https://doi.org/10.1016/j. ijthermalsci.2004.07.006
- 38. Voitcu G., Echim M. Transport and entry of plasma clouds/jets across transverse magnetic discontinuities: Three-dimensional electromagnetic particle-incell simulations. Journal of Geophysical Research: Space Physics. 2016. (121), 4343–4361 https://doi. org/10.1002/2015JA021973
- 39. Marchetti J., Patruno L., Jakobsen H. Mathematical framework for higher-order breakage scenarios. Chemical Engineering Science. 2010. (65), 5881– 5886. https://doi.org/10.1016/j.ces.2010.08.008
- 40. Hu J., Tsai H. Heat and mass transfer in gas metal arc welding. Part I: The Arc. Int. J. Heat and mass transfer. 2007. 50(5–6), 833–846. https://doi. org/10.1016/j.ijheatmasstransfer.2006.08.025
- 41. Hill P., Ng K. Statistics of multiple particle breakage. AIChE. 1996. (42), 1600–1611. https://doi. org/10.1002/aic.10091
- 42. Hryhorenko G., Adeeva L., Tunik A. et al. Formation of microstructure of plasma-arc coatings obtained using powder wires with steel skin and B4C + (Cr, Fe)7C3 + Al filler. Metallofizika i Noveishie Tekhnologii. 2020. 42(9), 1265‒1282. https://doi. org/10.15407/mfint.42.09.1265
- 43. Hryhorenko G., Adeeva L., Tunik A. et al. Structurization of coatings in the plasma arc spraying process using B4C + (Cr, Fe)7C3-cored wires. Powder Metall. Met. Ceram. 2019. 58(5–6), 312‒322. https://doi.org/10.1007/s11106-019-00080-1
- 44. ISO 2591-1:1988 «Test sieving — Part 1: Methods using test sieves of woven wire cloth and perforated metal plate». 1988, 13.
- 45. Gulyaev I., Dolmatov A., Kharlamov M. et al. Arcplasma wire spraying: an optical study of process phenomenology. Journal of Thermal Spray Technology. 2015. (24), 1566-1573. https://doi.org/10.1007/ s11666-015-0356-6
- 46. Fialko N., Dinzhos R., Sherenkovskii J. et al. Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt. Eastern-European Journal of Enterprise Technologies. 2022. 2(116), 25–30. https:// doi.org/10.15587/1729-4061.2022.255830
- 47. Gu Y., Zhang W., Xu Y. et al. Stress-assisted corrosion behaviour of Hastelloy N in FLiNaK molten salt environment. npj Mater Degrad. 2022. (6), 90. https://doi.org/10.1038/s41529-022-00300-x
- 48. Kvasnytskyi V., Korzhyk V., Kvasnytskyi V. et al. Designing brazing filler metal for heatresistant alloys based on NI3AL intermetallide. Eastern-European Journal of Enterprise Technologies. 2020. 6(108), 6–19. https://doi. org/10.15587/1729-4061.2020.217819
- 49. Han J., Shi Y., Zhang G. et al. Minimizing defects and controlling the morphology of laser welded aluminium alloys using power modulation-based laser beam oscillation. J. Manufacturing Processes. 2022. (83), 49‒59. https://doi.org/10.1016/j. jmapro.2022.08.031
- 50. Skorokhod A., Sviridova I., Korzhik V. Structural and mechanical properties of polyethylene terephthalate coatings as affected by mechanical pretreatment of powder in the course of preparation. Mechanics of Composite Materials. 1994. 30(4), 455–463.
- 51. Kharlamov M., Krivtsun I, Korzhyk. V. Simulation of motion, heating and breakup of molten metal droplets in the plasma jet at plasma-arc spraying. Journal of Thermal Spray Technology. 2015. (24), 659–670. https://doi.org/10.1007/s11666-015-0216-4
- 52. Bobzina K., Ernsta F., Richardta K. et al. Thermal spraying of cylinder bores with the plasma transferred wire arc process. Surface and Coatings Technology. 2008. 202(18), 4438–4443. https://doi. org/10.1016/j.surfcoat.2008.04.023
- 53. Fan H., Kovacevic R. A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. J. Phys. D: Appl. Phys. 2004. (37), 2531–2544. https://doi. org/10.1088/0022-3727/37/18/009
- 54. Haidar J., Lowke J. Predictions of metal droplet formation in arc welding. J. Phys. D: Appl. Phys. 1996. (29), 2951–2960. https://doi. org/10.1088/0022-3727/29/12/003
- 55. Nemchinsky V. Size and shape of the liquid droplet at the molten tip of an arc electrode. J. Phys. D: Appl. Phys. 1994. (27), 1433–1442. https://doi. org/10.1088/0022-3727/27/7/014
- 56. Kelkar M., Heberlein J. Wire-arc spray modeling. plasma chemistry and plasma processing. 2002. (22), 1–25. https://doi.org/10.1023/A:1012924714157
- 57. Bolot R., Planche M., Liao H. et al. A three-dimensional model of the wire-arc spray process and its experimental validation. J. Mater. Process. Technol. 2008. (200), 94–105. https://doi.org/10.1016/j. jmatprotec.2007.08.032
- 58. Chon Y., Liang X., Wei S. et al. Numerical simulation of the twin-wire arc spraying process: Modelling the high-velocity gas flow field distribution and droplets transport. Journal of Thermal Spray Technology. 2012. 21(2), 263–274. https://doi. org/10.1007/s11666-011-9723-0
- 59. Eggers J., Dupont T. Drop formation in a one-dimensional approximation of the navier-stokes equation. J. Fluid Mech. 1994. (262), 205-221. https:// doi.org/10.1017/S0022112094000480
- 60. Hussary N., Heberlein J. Atomization and particle-jet interactions in the wire-arc spraying process. Journal of Thermal Spray Technology. 2001. 10(4), 604– 610. https://doi.org/10.1361/105996301770349123
- 61. Pourmousa А., Mostaghimi J., Abedini A. et al.Particle size distribution in a wire-arc spraying system. Journal of Thermal Spray Technology. 2005. 14(4), 502–510. https://doi. org/10.1361/105996305X76522
- 62. Gedzevicius I., Valiulis A. Analysis of wire arc spraying process variables on coatings properties. J. Mater. Process. Technol. 2006. (175), 206–211. https://doi.org/10.1016/j.jmatprotec.2005.04.019
- 63. Hussary N., Heberlein J. Effect of system parameters on metal breakup and particle formation in the wire arc spray process. Journal of Thermal Spray Technology. 2007. 16(1), 140–152. https://doi. org/10.1007/s11666-006-9006-3
- 64. Fialko N., Prokopov V., Meranova, N. et al. Thermal physics of gasothermal coatings formation processes. State of investigations. Fizika i Khimiya Obrabotki Materialov. 1993. (4), 83–93.
- 65. Skorokhod, A., Sviridova, I., Korzhik, V. The effect of mechanical pretreatment of polyethylene tere phthalate powder on the structural and mechanical properties of coatings made from it. Mechanics of Composite Materials. 1995. 30(4), 328–334. https:// doi.org/10.1007/BF0063475
- 66. Fialko N., Dinzhos R., Sherenkovskii J. et al. Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties. Eastern-European Journal of Enterprise Technologies. 2021. 4(112), 21–26. https://doi.org/10.15587/1729-4061.2021.236915
- 67. Tillmann W., Abdulgader M. Wire composition: Its effect on metal disintegration and particle formation in twin-wire arc-spraying process. Journal of Thermal Spray Technology. 22(2–3), 352–362. https:// doi.org/10.1007/s11666-012-9870-y
- 68. Wang P., Li X., Zhou X. et al. Numerical simulation on metallic droplet deformation and breakup concerning particle morphology and hollow particle formation during gas atomization. transactions of nonferrous metals society of China. 2024. 7(34), 2074 2094. https://doi.org/10.1016/ S1003-6326(24)66526-X
- 69. Ibrahim M., Gobber F., Hulme C. et al. Influence of atomizing gas pressure on microstructure and properties of nickel silicide intended for additive manufacturing. Metals. 2024. (14), 930. https://doi org/10.3390/met14080930
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29b6d8d4-5c14-4fda-b0e9-077d6f822341
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.