PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced Considerations Concerning Impact of Applied Call Admission Control Mechanisms on Traffic Characteristics in Elastic Optical Network Nodes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past few years, a significant increase in network traffic volumes has been observed. The ever growing bandwidth demands mean that a reliable and optimum service level needs to be ensured in communication systems for specific traffic categories. Optimal allocation and use of resources may be achieved through the use of call admission control (CAC) mechanisms implemented in network systems. The resource reservation mechanism and the threshold mechanism are two of the most popular CAC methods. In the reservation mechanisms, a certain number of resources is reserved for selected (predefined) services only. In the case of threshold mechanisms, the number of resources allocated to individual traffic classes depends on the network load. This article discusses the results of simulations verifying the impact of applied CAC mechanisms on the traffic characteristics in elastic optical network (EON) nodes with a Clos structure. Loss probability results obtained with the use of the simulator are presented as well.
Rocznik
Tom
Strony
68--75
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Faculty of Computing and Telecommunications Poznan University of Technology, Poznan, Poland
  • Faculty of Computing and Telecommunications University of Technology, Poznan, Poland
Bibliografia
  • [1] E. Hugues-Salas et al., “Next Generation Optical Nodes: The Vision of the European Research Project Idealist”, IEEE Communications Magazine, vol. 53 , no. 2, pp. 172– 181, 2015 (https://doi.org/10.1109/MCOM.2015.7045406).
  • [2] B.C. Chatterjee, S. Ba, and E. Oki, “Fragmentation Problems and Management Approaches in Elastic Optical Networks: A Survey”, IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 183–210, 2018 (https://doi.org/ 10. 1109/COMST.2017.2769102).
  • [3] O. Gerstel, M. Jinno, A. Lord, and S.J.B. Yoo, “Elastic Optical Networking: A New Dawn for the Optical Layer?”, IEEE Communications Magazine, vol. 50, no. 2, pp. 12–20, 2012 (https: //doi.org/10.1109/MCOM.2012.6146481).
  • [4] V. López and L. Velasco, Elastic Optical Networks: Architectures, Technologies, and Control, Springer Publishing Company, 299 p., 2016 (https://doi.org/10.1007/978-3-319-30174-7).
  • [5] D. Feng, W. Sun, and W. Hu, “Optical Grooming Capable Wavelength Division Multiplexing Node Architecture for Beyond 100Gbps Transport”, Optical Switching and Networking, vol. 34, pp. 67– 78, 2019 (https://doi.org/10.1016/j.osn.2019.07.001).
  • [6] S. Shahsavari, H. Beyranvand, and J.A. Salehi, “Multi-quality of Service Routing and Spectrum Assignment in Elastic Optical Networks”, in: 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017 (https://doi.org/ 10.1109/ICC.2017.7997409).
  • [7] A.S. Santos et al., “An Online Strategy for Service Degradation with Proportional QoS in Elastic Optical Networks”, in: 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018 (https://doi.org/10.1109/ICC.2018.8422781).
  • [8] M. Głąbowski and M. Sobieraj, “Analytical Modelling of Multiservice Switching Networks with Multiservice Sources and Resource Management Mechanisms”, Telecommunication Systems, vol. 66, no. 3, pp. 559– 578, 2017 (https://doi.org/ 10.1007/s11235- 017-0305-4).
  • [9] Y. Jiao et al., “Reliability-oriented RSA Combined with Reinforcement Learning in Elastic Optical Networks”, in: 2022 20th International Conference on Optical Communications and Networks (ICOCN), Shenzhen, China, 2022 (https://doi.org/ 10.1109/ICOCN5551 1.2022.9901238).
  • [10] L. Zhao, S. Yin, Y. Chai, Y. Jiao, and S. Huang, “A RSA Policy with Failure Probability Based on Reinforcement Learning in Multi-band Optical Network”, in: 2022 20th International Conference on Optical Communications and Networks (ICOCN), Shenzhen, China, 2022 (https://doi.org/10.1109/ICOCN55511.2022.99011640).
  • [11] J. Zhang, P. Miao, and F. Zhang, “On Optimal Routing and Spectrum Allocation in Elastic Optical Networks”, in: 2023 2 nd International Conference on Big Data, Information and Computer Network (BDICN), Xishuangbanna, China, pp. 284–287, 2023 (https://doi.org/10.1109/BDICN58493.2023.00066).
  • [12] R. Wang, F. Meng, R. Nejabati, and D. Simeonidou, “A Novel Traffic Grooming Scheme for Nonlinear Elastic Optical Network”, in: 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 2017 (https://doi.org/ 10. 1109/ECOC.2017.8346004).
  • [13] M. Głąbowski and M. Sobieraj, “Point-to-group Blocking Probability in Switching Networks with Threshold Mechanisms”, in: 2009 Fifth Advanced International Conf. on Telecommunications, Venice, Italy, pp. 95–100, 2009 (https://doi.org/ 10. 1109/AICT.2009.22).
  • [14] M. Głąbowski, M. Sobieraj, and M. Stasiak, “A Full-availability Group Model with Multi-service Sources and Threshold Mechanisms”, in: 2012 8 th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), Poznan, Poland, 2012 (https://doi.org/10.1109/CSNDSP.2012.6292698).
  • [15] M. Głąbowski, M. Sobieraj, and M. Stasiak, “Modelling Limited-availability Systems with Multiservice Sources and Bandwidth Reservation”, in: Proceedings of 8th Advanced International Conference on Telecommunications, IARIA, pp. 105– 110, 2012 [Online]. Available: http://www.thinkmind.org/index.php?view=article_articleid=aict_2012_5_30_10167.
  • [16] M. Głąbowski and M. Sobieraj, “Point-to-group Blocking Probability in Switching Networks with Multi-service Sources and Bandwidth Reservation”, in: Proceedings of 9th International Symposium on Communication Systems, Networks and Digital Signal Processing, pp. 93– 98, 2014 (https://doi.org/ 10.1109/CSNDSP.2014.6923805).
  • [17] W. Kabaciński and R. Rajewski, “Wide-sense Nonblocking Converting-converting Networks with Multirate Connections”, Sensors, vol. 22, no. 16 , art. no. 6217, 2022 (https://doi.org/ 10. 3390/s22166217).
  • [18] M. Abdulsahib, M. Michalski, and W. Kabaciński, “Optimization of Wide-sense Nonblocking Elastic Optical Switches”, Optical Switching and Networking, vol. 33, pp. 85– 94, 2019 (https://doi.org/ 10.1016/j.osn.2018.01.003).
  • [19] W. Kabaciński, M. Michalski, and R. Rajewski, “Strict-sense Nonblocking W-S-W Node Architectures for Elastic Optical Networks”, Journal of Lightwave Technology, vol. 34, no. 13, pp. 3155– 3162, 2016 (https://doi.org/10.1109/JLT.2016.2560624).
  • [20] M. Głąbowski, E. Leitgeb, M. Sobieraj, and M. Stasiak, “Analytical Modeling of Switching Fabrics of Elastic Optical Networks”, IEEE Access, vol. 8 , pp. 193462– 193477, 2020 (https://doi.org/ 10.1109/ACCESS.2020.3033186).
  • [21] M. Głąbowski, H. Ivanov, E. Leitgeb, M. Sobieraj, and M. Stasiak, “Simulation Studies of Elastic Optical Networks Based on 3-stage Clos Switching Fabric”, Optical Switching and Networking, vol. 36, art. no. 100555, 2020 (https://doi.org/ 10.1016/j.osn.2020.100555).
  • [22] M. Głąbowski, M. Sobieraj, and M. Stasiak, “An Approach to Analytical Modelling of Optical Switching Networks”, in: Proceedings of the 2018 IEICE General Conference, pp. 72–73, 2018.
  • [23] D.T. Hai, M.Y. Morvan, and P. Gravey, “Combining Heuristic and Exact Approaches for Solving the Routing and Spectrum Assignment Problem”, IET Optoelectronics, vol. 12, no. 2, pp. 65– 72, 2018 (https://doi.org/10.1049/iet-opt.2017.0013).
  • [24] B.C. Chatterjee, N. Sarma, and E. Oki, “Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial”, IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1776 –1800, 2015 (https://doi.org/10.1109/COMST.2015.2431731).
  • [25] J. Zhang, F. Qian, and J. Yang, “Online Routing and Spectrum Allocation in Elastic Optical Networks Based on Dueling Deep Q-network”, Computers & Industrial Engineering, vol. 173, art. 108663 , 2022 (https://doi.org/10.1016/j.cie.2022.108663).
  • [26] ITU-T, “G.694.1: Spectral grids for WDM applications: DWDM frequency grid”, International Telecommunication Union – Telecommunication Standardization Sector (ITU-T), Technical Report, 2012.
  • [27] M. Jinno et al., “Spectrum-efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies”, IEEE Communications Magazine, vol. 47, no. 11 , pp. 66– 73, 2009 (https://doi.org/10.1109/MCOM.2009.5307468).
  • [28] R. Proietti et al., “ 3D Elastic Optical Networking in the Temporal, Spectral, and Spatial Domains”, IEEE Communications Magazine, vol. 53, no. 2, pp. 79– 87, 2015 (https://doi.org/ 10.1109/MCOM.20 15.7045394).
  • [29] I. Tomkos, S. Azodolmolky, J. Solé-Pareta, D. Careglio, and E. Palkopoulou, “A Tutorial on the Flexible Optical Networking Paradigm: State of the Art, Trends, and Research Challenges”, Proceedings of the IEEE, vol. 102 , no. 9, pp. 1317 –1337, 2014 (https://doi.org/10.1109/JPROC.2014.2324652).
  • [30] C.T. Politi et al., “Dynamic Operation of Flexi-grid OFDM-based Networks”, in: Optical Fiber Communication Conference, Los Angeles, USA, 2012 (https://doi.org/10.1364/OFC.2012.OTh3B.2).
  • [31] M. Głąbowski, M. Sobieraj, and M. Stasiak, “Analytical Modeling of Multi-service Systems with Multi-service Sources”, in: 2010 16 th Asia-Pacific Conference on Communications (APCC), Auckland, New Zealand, 2010 (https://doi.org/ 10. 1109/APCC.2010.5679781).
  • [32] M. Sobieraj, P. Zwierzykowski, and E. Leitgeb, “Determination of Traffic Characteristics of Elastic Optical Networks Nodes with Reservation Mechanisms”, Electronics, vol. 10, no. 15, art. no. 1853 , 2021 (https://doi.org/10.3390/electronics10151853).
  • [33] M. Sobieraj, P. Zwierzykowski, and E. Leitgeb, “Modelling and Optimization of Multi-service Optical Switching Networks with Threshold Management Mechanisms”, Electronics, vol. 10, no. 13, art. no. 1515 , 2021 (https://doi.org/ 10.3390/electronics10131515).
  • [34] M. Głąbowski, M. Sobieraj, and M. Stasiak, “Modeling Switching Networks with Multi-service Sources and Point-to-group Selection”, in: 18th Asia-Pacific Conference on Communications (APCC), Jeju, South Korea, 2012 (https://doi.org/ 10.1109/APCC.2012.6388282).
  • [35] W. Kabaciński, M. Michalski, and R. Rajewski, “Strict-sense Nonblocking W-S-W node Architectures for Elastic Optical Networks”, Journal of Lightwave Technology, vol. 34, no. 13, pp. 3155– 3162, 2016 (https://doi.org/10.1109/JLT.2016.2560624).
  • [36] W. Kabaciński, M. Michalski, and R. Rajewski, “Optimization of Strict-sense Nonblocking Wavelength-space-wavelength Elastic Optical Switching Fabrics”, Optical Switching and Networking, vol. 33, pp. 76– 84, 2019 (https://doi.org/ 10.1016/j.osn.2017.10.003).
  • [37] “Dual wavelength selective switch (WSS)”, Finisar Product Brief, 2019. [Online]. Available: https://finisarwss.com/wp-content/uploads/2020/07/FinisarWSS_Dual_Wavelength_Selective_Switch_ProductBrief_Jul2020.pdf.
  • [38] C. Politi, C. Matrakidis, and A. Stavdas, “Optical Wavelength and Waveband Converters”, in: 2006 International Conference on Transparent Optical Networks, Nottingham, UK, pp. 179–182, 2006 (https://doi.org/10.1109/ICTON.2006.248269).
  • [39] D. Vukovic et al., “Wavelength Conversion of a 9.35-Gb/s RZ OOK Signal in an InP Photonic Crystal Nanocavity”, IEEE Photonics Technology Letters, vol. 26, no. 3 , pp. 257 –260, 2014 (https://doi.org/10.1109/LPT.2013.2291965).
  • [40] M. Matsuura and N. Kishi, “Flexible Broadband Wavelength Conversion in Quantum-dot Semiconductor Optical Amplifiers”, IEEE Photonics Technology Letters, vol. 23, no. 15, pp. 1097– 1099, 2011 (https://doi.org/10.1109/LPT.2011.2154322).
  • [41] J. Tyszer, Object-Oriented Computer Simulation of Discrete-Event Systems, Kluwer Academic Publishers Group, 258 p., 1999 (https://doi.org/10.1007/978-1-4615-5033-4).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29b2f89d-0225-4976-b8fe-66c7a6aab28f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.