PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Submicrometric glassy carbon as filler for hdpe-based conductive polymer composites for esd and emi applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glassy carbon (GC) is a unique form of carbon that possesses a wide range of useful properties, including high thermal stability, low thermal expansion, and excellent electrical conductivity. This makes it a promising candidate for reinforcement in thermoplastic composites. In this work, micrometric GC powder (µGC) and submicrometric GC powder (sµGC) were used to make a high-density polyethylene (HDPE) base composite. The GC reinforcement was introduced to the polymer matrix by two different methods to form random and segregated reinforcement distribution. The influence of the GC volume content (φ) and composite structure on electrical conductivity was examined. It was demonstrated that while glassy carbon can enhance the conductivity of HDPE more effectively than graphite, it falls short of matching the exceptional performance of carbon na notubes, which bridge the gap between them. The research showed that the addition of GC increases the conductivity of HDPE, and achievement of the percolation threshold (φc) is possible at φ ≈ 4 %. The segregated distribution of GC leads to lower values of the percolation threshold (φc ≈ 1 %) than the random distribution.
Rocznik
Strony
220--225
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Łukasiewicz Research Network - New Chemical Syntheses Institute, Micronization Laboratory, ul. J. Sowińskiego 11, 44-101 Gliwice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Institute of Physic - Centre for Science and Education, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Institute of Physic - Centre for Science and Education, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Polish Academy of Sciences, Centre of Polymer and Carbon Materials, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
  • International Polish-Ukrainian Research Laboratory ADPOLCOM
  • Polish Academy of Sciences, Centre of Polymer and Carbon Materials, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
  • International Polish-Ukrainian Research Laboratory ADPOLCOM
  • International Polish-Ukrainian Research Laboratory ADPOLCOM
  • E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, Kazymyr Malevych 11, 03680, Kyiv, Ukraine
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • International Polish-Ukrainian Research Laboratory ADPOLCOM
Bibliografia
  • [1] Sharma S., Glassy carbon: A promising material for micro and nanomanufacturing, Materials 2018, 11.
  • [2] Uskoković V., A historical review of glassy carbon: Synthe sis, structure, properties and applications, Carbon Trends 2021, 5.
  • [3] Garion C., Mechanical properties for reliability analysis of structures in glassy carbon, World Journal of Mechanics 2014, 4, 79-89, DOI: 10.4236/wjm.2014.43009.
  • [4] Fischbach D.B., Magnetic susceptibility of glassy carbon, Carbon 1967, 5, 565-570, DOI: 10.1016/0008-6223(67) 90034-6.
  • [5] Kinoshita K., Carbon: Electrochemical and Physicochemical Properties, Wiley, New York 1988.
  • [6] Jenkins G.M., Kawamura K., Polymeric carbons, carbon fibre, glass and char, Journal of Molecular Structure 1977, 36, 172, DOI: 10.1016/0022-2860(77)85028-X.
  • [7] Lauslahti K., Pätiälä H., Rokkanen P., Tarvainen T., Rauta vuori J., Törmälä P., Interaction of microporous glassy car bon and living tissue, Annals of Biomedical Engineering 1983, 11, 495-498, DOI: 10.1007/BF02584221.
  • [8] Haubold A.D., Blood/carbon interactions, ASAIO 1983, 6, 88-92.
  • [9] Katsumoto K., Niibori T., Takamatsu T., Kaibara M., De velopment of glassy carbon electrode (Dead Sea Scroll) for low energy cardiac pacing, Pacing and Clinical Electro physiology 1986, 9, 1220-1224, DOI: 10.1111/j.1540 8159.1986.tb06698.x.
  • [10] Walker P.L., Straumanis M.E., Chemistry and physics of carbon: A series of advances, Vol. 4. Physics Today 1970, 23, 77-79. DOI: 10.1063/1.3021988. [11] Zittel H.E., Miller F.J., A glassy-carbon electrode for volt ammetry, Analytical Chemistry 1965, 37, 200-203, DOI: 10.1021/ac60221a006. [12] Yoshimori T., Arakawa M., Takeuchi T., Anodic stripping coulometry of gold using the glassy carbon electrode, Talanta 1965, 12, 147-152, DOI: 10.1016/0039-9140(65) 80030-3.
  • [13] Pérez-Villar S., Lanz P., Schneider H., Novák P., Charac terization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy, Electrochimica Acta 2013, 106, 506- -515, DOI: 10.1016/j.electacta.2013.05.124.
  • [14] Youn S.W., Takahashi M., Goto H., Maeda R., A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses, Jour nal of Micromechanics and Microengineering 2006, 16, 2576-2584, DOI: 10.1088/0960-1317/16/12/009.
  • [15] Kempegowda R.G., Malingappa P., Covalent modification of glassy carbon spheres through ball milling under solvent free conditions: A novel electrochemical interface for mer cury(II) quantification, Talanta 2014, 126, 54-60, DOI: 10.1016/j.talanta.2014.02.043.
  • [16] Rosner R.B., Conductive materials for ESD applications: an overview, IEEE Transactions on Device and Materials Reli ability 2001, 1, 9-16, DOI: 10.1109/7298.946455.
  • [17] Mamunya Y., Maruzhenko O., Kolisnyk R., Iurzhenko M., Pylypenko A., Masiuchok O., Godzierz M., Krivtsun I., Trzebicka B., Pruvost S., Pyroresistive properties of com posites based on HDPE and carbon fillers, Polymers 2023, 15, 2105, DOI: 10.3390/polym15092105.
  • [18] Hosseini E., Tanguy N.R., Arjmand M., Sundararaj U., Yan N., Karan K., Highly transparent multilayer organic thin film for effective antistatic and electromagnetic interference shielding applications, MRS Bulletin 2023, 48, 890-898, DOI: 10.1557/s43577-023-00538-z.
  • [19] Braga N.F., da Silva T.F., dos Anjos E.G.R., Zaggo H.M., Wearn Y.N., Antonelli E., Passador F.R., Antistatic packag ing for electronic devices of PTT-based polymer blends, Composites, and Nanocomposites 2023, 251-274.
  • [20] Szewczyk P.K., Taşlı A.E., Knapczyk-Korczak J., Stache wicz U., Steering triboelectric and mechanical properties of polymer fibers with carbon black, Composites Science and Technology 2023, 243, 110247, DOI: 10.1016/j. compscitech.2023.110247.
  • [21] Zou L., Zuo H., Dou T., Wang H., Sun Y., Liu L., Yao M., Ruan F., Xu Z., 3D printing of carbon fiber pow der/polylactic acid with enhanced electromagnetic interfer ence shielding. Diamond and Related Materials 2024, 141, 110583, DOI: 10.1016/j.diamond.2023.110583.
  • [22] Santos dos M.S., Montagna L.S., Rezende M.C., Passador F.R., A new use for glassy carbon: Development of LDPE/glassy carbon composites for antistatic packaging applications, Journal of Applied Polymer Science 2019, 136, 47204, DOI: 10.1002/app.47204.
  • [23] de Souza Vieira L., Montagna L.S., Marini J., Passador F.R., Influence of particle size and glassy carbon content on the thermal, mechanical, and electrical properties of PHBV/glassy carbon composites, Journal of Applied Poly mer Science 2021, 138, DOI: 10.1002/app.49740.
  • [24] Szczurek A., Fierro V., Plyushch A., Macutkevic J., Kuzhir P., Celzard A., Structure and electromagnetic properties of cellular glassy carbon monoliths with controlled cell size, Materials 2018, 11, DOI: 10.3390/ma11050709.
  • [25] Oyama I.C., Souza G.P.M., Rezende M.C., Montagna L.S., Passador F.R., A new eco‐friendly green composite for anti static packaging: Green low‐density polyethylene/glassy carbon, Polymer Composites 2020, 41, 2744-2752, DOI: 10.1002/pc.25572.
  • [26] de Souza Vieira L., A review on the use of glassy carbon in advanced technological applications. Carbon 2022, 186, 282-302, DOI: 10.1016/j.carbon.2021.10.022.
  • [27] Olesik P., Kozioł M., Jała J., Processing and structure of HDPE/glassy carbon composite suitable for 3d printing, Composite Theory and Practice 2020, 20, 72-77.
  • [28] Szeluga U., Pusz S., Kumanek B., Olszowska K., Czajkow ska S., Myalski J., Kubacki J., Trzebicka B., Borowski A.F., Influence of unique structure of glassy carbon on morphol ogy and properties of its epoxy-based binary composites and hybrid composites with carbon nanotubes, Composites Sci ence and Technology 2016, 134, 72-80, DOI: 10.1016/j.compscitech.2016.08.004.
  • [29] Myalski J., Hekner B., Glassy carbon foams as skeleton reinforcement in polymer composite, Composites Theory and Practice 2017, 17, 41-46.
  • [30] Olesik P., Godzierz M., Kozioł M., Jała J., Szeluga U., Myalski J., Structure and mechanical properties of high density polyethylene composites reinforced with glassy car bon, Materials 2021, 14, 4024, DOI: 10.3390/ma14144024.
  • [31] Kolisnyk R., Korab M., Iurzhenko M., Masiuchok O., Ma munya Y., Development of heating elements based on con ductive polymer composites for electrofusion welding of plastics, Journal of Applied Polymer Science 2021, 138, 50418, DOI: 10.1002/app.50418.
  • [32] Maruzhenko O., Mamunya Y., Boiteux G., Pusz S., Szeluga U., Pruvost S., Improving the thermal and electrical proper ties of polymer composites by ordered distribution of carbon micro- and nanofillers, International Journal of Heat and Mass Transfer 2019, 138, 75-84, DOI: 10.1016/ j.ijheatmasstransfer.2019.04.043.
  • [33] Hoang L.T., Aghelinejad M., Leung S.N., Zhu Z.H., High Density Polyethylene/Carbon Nanotube Nanocomposite Foams: Electrical Conductivity and Percolation Threshold, In: Progress in Canadian Mechanical Engineering, York University Libraries 2018.
  • [34] Valentino O., Sarno M., Rainone N.G., Nobile M.R., Ciam belli P., Neitzert H.C., Simon G.P., Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites, Physica E: Low-dimensional Systems and Nanostructures 2008, 40, 2440-2445, DOI: 10.1016/j.physe.2008.02.001.
  • [35] Weng W.G., Chen G.H., Wu D.J., Yan W.L., HDPE/ expanded graphite electrically conducting composite, Com posite Interfaces 2004, 11, 131-143, DOI: 10.1163/ 156855404322971404.
  • [36] Wu G., Lin J., Zheng Q., Zhang M., Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene, Polymer 2006, 47, 2442-2447, DOI: 10.1016/j.polymer.2006.02.017.
  • [37] Alaferdov A.V., Lebedev O.V., Roggero U.F.S., Hernandez Figueroa H.E., Nista S.V.G., Trindade G.M., Danilov Y.A., Ozerin A.N., Moshkalev S.A., Highly conductive nanograph ite/ultra-high-molecular-weight polyethylene composite, Results in Materials 2022, 15, 100298, DOI: 10.1016/ j.rinma.2022.100298.
  • [38] Bhattacharjee Y., Biswas S., Bose S., Thermoplastic Poly mer Composites for EMI Shielding Applications, In: Mate rials for Potential EMI Shielding Applications, Elsevier 2020, 73-99.
  • [39] Al-Saleh M.H., Saadeh W.H., Sundararaj U., EMI shielding effectiveness of carbon based nanostructured polymeric ma terials: A comparative study, Carbon 2013, 60, 146-156, DOI: 10.1016/j.carbon.2013.04.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29a89104-51a8-4100-9d95-399e9c4b45a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.