PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flotation kinetics and separation selectivity of coal size fractions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation recovery and kinetics for three size fractions of coal were investigated. Flotation of combustible matter recovery was approximated with the first order kinetic equation while flotation of the ash forming minerals with the second order equation. Next, the equations for each size fraction were combined and a formula was obtained which was used for approximation of the experimental results using the so-called Fuerstenau upgrading curve, which relates the recovery of combustible matter recovery and recovery of ash forming minerals, both in concentrate. The Fuerstenau upgrading plot showed that the best selectivity was obtained for the middle size fraction of 0.25–0.075 mm, while the flotation selectivity of larger 0.5–0.25 mm and smaller –0.075 mm particles was diminished. This finding agrees with many other investigations.
Rocznik
Strony
387--395
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
Bibliografia
  • 1. ABKHOSHK E., KOR M., REZAI B., 2010. A study on the effect of particle size on coal flotation kinetics using fuzzy logic. Expert Systems with Applications, 37(7): 5201–5207.
  • 2. AKTAS Z., CILLIERS J.J., BANFORD A.W., 2008. Dynamic froth stability: Particle size, airflow rate and conditioning time effects. International Journal of Mineral Processing, 87(1–2): 65–71.
  • 3. AL TAWEEL, A.M., DELORY, B., WOZNICZEK, J., STEFANSKI, M., AN-DERSEN , N., HAMZA, H.A., 1986. Influence of the surface characteristics of coal on its floatability. Colloids Surf. 18(1), 9–18.
  • 4. ALBIJANIC B, OZDEMIR O., NGUYEN A.V., BRADSHAW D., 2010. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Advances in colloid and interface science, 159 (1):1–21.
  • 5. BAKALARZ A., DRZYMALA. J., 2013. Interrelation of the Fuerstenaua upgrading curves with kinetics of separation. Physicochemical Problems of Mineral Processing, 49(2), 443–451.
  • 6. BHATTACHARYA S., DEY S. 2008. Evaluation of frother performance in coal flotation: A critical review of existing methodologies. Mineral Processing and Extractive Metallurgy Review, 29(4): 275–298.
  • 7. BROZEK M., MLYNARCZYKOWSKA A., 2013. Analysis of effect of particle size on batch flotation of coal, Physicochemical Problems of Mineral Processing, 49(1): 341–356.
  • 8. BROZEK M., MLYNARCZYKOWSKA A., 2007. Analysis of kinetics models of batch flotation. Physicochemical Problems of Mineral Processing, 41: 51–65.
  • 9. BROZEK M., MLYNARCZYKOWSKA A., 2013. An Analysis of Effect of Particle Size on Batch Flotation of Coal. Physicochem. Probl. Miner. Process. 49(1), 2013, 341−356.
  • 10. CHELGANI S.C., SHAHBAZI B., REZAI B., 2010. Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network. International Journal of Mineral Metallurgy and Materials, 17(5): 526–534.
  • 11. DRZYMALA J., LUSZCZKIEWICZ A., Zalety krzywej uzysk–uzysk (Fuerstenaua) do technologicznej analizy i oceny wzbogacania surowców, Przeglad Gorniczy, 2011, 7/8, 122–128.
  • 12. DRZYMALA, J., 2006. Atlas of upgrading curves used in separation and mineral science and technology .Physicochemical Problems of Mineral Processing, 40: 19–29.
  • 13. DRZYMALA, J., AHMED, H.A. M., 2005. Mathematical equations f or approximation of separation results using the Fuerstenau upgrading curves. Int. J. Miner. Process. 76, 55–65.
  • 14. FAN M., TAO D., HONAKER R. ET AL., 2010. Nanobubble generation and its applications in froth flotation (part 2):fundamental study and theoretical analysis. Mining Science and Technology, 20(2):159–176.
  • 15. GAUDIN, A.M., GROH, J.O., HENDERSON, H.B., 1931. Effects of particle size on flotation. Am. Inst. Min. Metall. Eng., Tech. Publ. 414, 3–23.
  • 16. GUI X., LIU J., TAO X., WANG, Y., CAO Y., 2011. Studies on flotation rate of a hard-to-float fine coal. Journal of China Coal Society, 36(11):1895–1900.(In Chinese)
  • 17. IRELAND P.M., JAMESON G.J., 2012. Drag force on a spherical particle moving through a foam: The role of wettability. International journal of mineral processing, 102:78–88.
  • 18. JAMESON G. J., 2012. The Effect of Surface Liberation and Particle Size on Flotation Rate Constants. Minerals Engineering, 36–38 (2012) 132–137.
  • 19. JAMESON G.J., 2010. Advances in Fine and Coarse Particle Flotation. Canadian Metallurgical Quarterly, 49(4): 325–330.
  • 20. MUGANDA S., ZANIN M., GRANO S.R., 2011. Influence of particle size and contact angle on the flotation of chalcopyrite in a laboratory batch flotation cell .International Journal of Mineral Processing, 98:150–162.
  • 21. POLAT M., CHANDER, S., 2000. First-Order Flotation Kinetics Models And Methods For Estimation Of The True Distribution Of Flotation Rate Constants. INT. J. MINER. PROCESS. 58, 145–166
  • 22. POLAT, M., ARNOLD, B., CHANDER, S., HOGG, R., ZHOU, R., 1993. Coal flotation kinetics: Effect of particle size and specific gravity. In: Parekh, B.K., Groppo, J.G. Eds. , Proc. and Util. of High Sulfur Coals V, Elsevier, 161–171.
  • 23. RAHMAN R. M., ATA S., JAMESON G.J., 2012. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. International Journal of Mineral Processing 106–109 (2012) 70–77.
  • 24. SONG B., ZHI Y., ZENG D., 2001. The Investigate of Coal flotation optimal particle size. Coal Processing and Comprehensive Utilization, 1:16–18. (In Chinese)
  • 25. UCURUM M., BAYAT O., 2007. Effects of operating variables on modified flotation parameters in the mineral separation. Separation and Purification Technology, 55(2): 173–181.
  • 26. VAPUR H., BAYAT O., UÇURUM M., 2010. Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell. Energy Conversion and Management 51, 1891–1897.
  • 27. VAPUR H.; BAYAT O., UCURUM M., 2010. Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell. Energy Conversion and Management, 51(10): 1891–1897.
  • 28. WILLIAM J.O., ORHAN O., ANH V.N., 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Minerals Engineering, 23:413–419.
  • 29. XU Z. 2003. Electro kinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing, 68: 183–196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29a23d3a-331f-44ea-b3fc-516059c2898f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.