PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Płuczka wiertnicza na osnowie polimerów syntetycznych z dodatkiem nanomateriałów dostosowana do warunków otworowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Drilling mud based on synthetic polymers with the addition of nanomaterials adapted to borehole conditions
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki badań nad zastosowaniem poli-merów syntetycznych zbudowanych z merów winylowoamidowych, winylowosulfonowych, akrylowosulfonowych lub bezwodnika maleinowego do regulowania filtracji płuczek wiertniczych. Płuczki te zawierały w swoim składzie koloid ochronny typu skrobiowego, biopolimer, nanokrzemionkę hydrofobową dyspergowaną za pomocą sonifikatora w wodnym roztworze środków powierzchniowo czynnych oraz jonowy inhibitor hydratacji skał (KCl) i blokator węglanowy celem wytworzenia osadu filtracyjnego. Na podstawie przeprowadzonych badań z wykorzystaniem nowych środków syntetycznych dokonano ich doboru do regulowania filtracji oraz parametrów reologicznych płuczek wiertniczych w różnych warunkach geologicznych. Badania przeprowadzono dla płuczek o różnym stopniu zmineralizowania, przy różnej zawartości fazy stałej. Wykonano również badania właściwości smarnych i inhibicyjnych płuczek. Na podstawie uzyskanych wyników zaproponowano składy płuczek charakteryzujące się niską filtracją w warunkach HPHT. Przeprowadzono pomiary statycznej filtracji HPHT na standardowych sączkach do pomiaru filtracji oraz w temperaturach 60°C i 120°C. Filtrację przy użyciu aparatu Grace M2200 HPHT wykonano na rdzeniach o porowatości 20 µm. W celu odtworzenia warunków otworowych do płuczek dodawano zwierciny (zmielony łupek mioceński) i skażenia chemiczne w postaci chlorków wapnia i magnezu. Wyniki pomiarów na aparacie Grace M2200 HPHT podane w artykule zostały przeliczone na podstawie stosunku po- wierzchni filtracji w celu porównania ze statyczną filtracją HPHT. Uzyskane wyniki badań mogą znaleźć zastosowanie w warunkach przemysłowych podczas głębokich wierceń oraz pozyskiwania energii geotermalnej.
EN
The article presents the results of research on the use of synthetic polymers made of vinylamide, vinylsulfonic, acryl-sulfonic or maleic anhydride to regulate the filtration of drilling fluids. These muds contained a starch-type colloid, a biopolymer, hydrophobic nanosilica dispersed using a sonificator in an aqueous solution of surfactants, as well as an ionic rock hydration inhibitor (KCl) and a carbonate blocker to produce a filter cake. Based on the research carried out with the use of new synthetic agents, their selection was made for regulating the filtration and rheological parameters of drilling fluids under various geological conditions. The tests were carried out for muds of various mineralization levels, with different solids content. The lubricating and inhibitory properties of the muds were also tested. On the basis of the obtained results, the drilling fluids compositions with low HPHT filtration were proposed. Static HPHT filtration measurements were performed on standard filters for filtration measurement and at a temperature of 60 and 120°C. Filtration using a Grace M2200 HPHT apparatus was performed on cores with a porosity of 20 µm. In order to restore the borehole conditions, drill cuttings (ground Miocene shale) and chemical contamination in the form of calcium and magnesium chlorides were added to the muds. The results of the measurements made using the Grace M2200 HPHT apparatus given in the article were converted from the filtration area ratio for comparison with the static HPHT filtration. The obtained research results can be used in industrial conditions during deep drilling and the acquisition of geothermal energy.
Czasopismo
Rocznik
Strony
157--170
Opis fizyczny
Bibliogr. 65 poz., rys.
Twórcy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
Bibliografia
  • Abdo J., Haneef M.D., 2010. Nanoparticles: Promising Solution to Overcome Stern Drilling Problems. NSTI-Nanotech. ISBN 978-1-4398-3415-2.
  • Abdo J., Haneef M.D., 2012. Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems. Journal of Energy Resources Technology, 134(1): 014501. DOI: 10.1115/1.4005244.
  • Abdo J., Haneef M.D., 2013. Clay Nanoparticles Modified Drilling Fluids for Drilling of Deep Hydrocarbon Wells. Applied Clay Science,86: 76–82. DOI: 10.1016/j.clay.2013.10.017.
  • Agarwal S., Tran P., Soong Y., Martello D., Gupta R., 2011. Flow Behavior of Nanoparticle Stabilized Drilling Fluids and Effect of High Temperature Aging. AADE National Technical Conference and Exhibition, Houston, Texas, AADE-11-NTCE-3: 1–6.
  • Akhtarmanesh S., Atashnezhad A., Hareland G., Nygaard R., 2017. Application of Differential Evolution to Predict Wellbore Strengthening From Drilling Fluid Containing Nanoparticles HPHT Filtration Test Results. 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA.
  • Al-Shargabi M., Davoodi S., Wood D.A., Al-Musai A., Ruka-vishnikov V.S., Minaev K.M., 2022. Nanoparticle Applications as Beneficial Oil and Gas Drilling Fluid Additives: A Review. Journal of Molecular Liquids, 352: 118725. DOI: 10.1016/j.molliq.2022.118725.
  • Arambulo S., Colque P., Alban E.D., Ahmed M., 2015. Case Studies Validate the Effectiveness of Aluminum-based HPWBM in Stabilizing Micro-Fractured Shale Formations: Field Experience in the Peruvian Amazon. SPE Annual Technical Conference and Exhibition, Houston, Texas, USA. DOI: 10.2118/174854-MS.
  • Baig N., Kammakakam I., Falath W., 2021. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Advanced Materials, 2(6): 1821–1871. DOI: 10.1039/D0MA00807A.
  • Beall B.B., Brannon H.D., Tjon-Joe-Pin R.M., Driscoll K., 1996. Evaluation of a new technique for removing horizontal wellborn damage attributable to Grill-In Filter Cake. Society of Petroleum Engineers, 36429.
  • Beg M., Kumar P., Choudhary P., Sharma S., 2020. Effect of High Temperature Ageing on TiO2 Nanoparticles Enhanced Drilling Fluids: A Rheological and Filtration Study. Upstream Oil and Gas Technology, 5: 100019. DOI: 10.1016/j.upstre.2020.100019.
  • Bielewicz D., Bortel E., 2000. Polimery w technologii płuczek wiertniczych. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
  • Bielewicz D., Bortel E., Witek E., 2003a. Polimery amfoteryczne w zastosowaniu do płuczek wiertniczych. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
  • Bielewicz D., Wysocka M., Wysocki S., 2003b. Poliamfolit poli(KAMPS-co-VAm ∙ HCl) – skuteczny inhibitor hydratacji łupków. Wiertnictwo, Nafta, Gaz, 20(1): 61–68.
  • Borisov A.S., Husein M., Hareland G.A., 2015. Field Application of Nanoparticle-Based Invert Emulsion Drilling Fluids. Journal of Nanoparticle Research, 17(8): 340. DOI: 10.1007/s11051-015-3143-x.
  • Bortel E., Witek E., Kochanowski A., 2003. Polielektrolity z merami winyloaminowymi i produkty ich modyfikacji. Przemysł Chemiczny,82(8–9): 889–892.
  • Cai J., Chenevert M.E., Sharma M.M., Friedheim J.E., 2012. Decreasing Water Invasion Into Atoka Shale Using Nonmodified Silica Nanoparticles. SPE Drilling & Completion, 27(1): 103–112. DOI: 10.2118/146979-PA.
  • Cheraghian G., 2021. Nanoparticles in Drilling Fluid: A Review of the State-of-the-Art. Journal of Materials Research Technology, 13: 737–753. DOI: 10.1016/j.jmrt.2021.04.089.
  • Cheraghian G.G., Afrand M., 2021. Nanotechnology for Drilling Operations. [W:] Ahmed W., Booth M., Nourafkan E. (eds.). Emergency Nanotechnologies for Renewable Energy, 135–148. DOI: 10.1016/B978-0-12-821346-9.00008-0.
  • Contreras O., Hareland G., Husein M., Nygaard R., Alsaba M., 2014a. Application of In-House Prepared Nanoparticles as Filtration Control Additive to Reduce Formation Damage. SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA. DOI: 10.2118/168116-MS.
  • Contreras O., Hareland G., Husein M., Nygaard R., Alsaba M., 2014b. Experimental Investigation on Wellbore Strengthening In Shales by Means of Nanoparticle-Based Drilling Fluids. SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands. DOI:10.2118/170589-MS.
  • Dębińska E., 2014. Wpływ nanokrzemionki na parametry mechaniczne kamienia cementowego. Nafta-Gaz, 70(4): 229–235.
  • Dębińska E., 2015. Niekonwencjonalne zaczyny cementowe z dodatkiem nanokrzemionki. Nafta-Gaz, 71(5): 290–300.
  • El-Diasty A.I., Aly A.M., 2015. Understanding the Mechanism of Nanoparticles Applications in Enhanced Oil Recovery. SPE North Africa Technical Conference and Exhibition, Cairo, Egypt. DOI: 10.2118/175806-MS.
  • Elkatatny S., 2019. Assessing the Effect of Micronized Starch on Rheological and Filtration Properties of Water-Based Drilling Fluid. SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain. DOI: 10.2118/194965-MS.
  • Fakoya M.F., Shah S.N., 2018. Effect of Silica Nanoparticles on the Rheological Properties and Filtration Performance of Surfactant-Based and Polymeric Fracturing Fluids and Their Blends. SPE Drilling & Completion, 33: 100–114. DOI: 10.2118/163921-PA.
  • Farahbod F., 2021. Experimental Investigation of Thermo-Physical Properties of Drilling Fluid Integrated with Nanoparticles: Improvement of Drilling Operation Performance. Powder Technology, 384: 125–131. DOI: 10.1016/j.powtec.2021.02.002.
  • Friedheim J., Young S., De Stefano G., Lee J., Guo Q., 2012. Nanotechnology for Oilfield Applications – Hype or Reality? SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands. DOI: 10.2118/157032-MS.
  • Gallardo F.E., Erdmann E., Abalos R., 2018. Evaluación Reológica de Fluidos de Perforación Base Agua Con Nanosílice. Matéria (Rio de Janeiro), 23(2). DOI: 10.1590/S1517-707620180002.0470.
  • González A.L., Noguez C., Beránek J., Barnard A.S., 2014. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. Journal of Physical Chemistry C, 118(17): 9128–9136. DOI: 10.1021/jp5018168.
  • Hemmat Esfe M., Bahiraei M., Mir A., 2020. Application of Conventional and Hybrid Nanofluids in Different Machining Processes: A Critical Review. Advances in Colloid and Interface Science, 282: 102199. DOI: 10.1016/j.cis.2020.102199.
  • Hong S.H., Jo H.J., Choi M.J., Jang H.W., Kim Y.J., Hwang W.R., Kim S.Y., 2019. Influence of MoS2 Nanosheet Size on Performance of Drilling Mud. Polymers (Basel), 11(2): 321. DOI: 10.3390/polym11020321.
  • Ikram R., Jan B.M., Vejpravova J., 2021. Towards Recent Tendencies in Drilling Fluids: Application of Carbon-Based Nanomaterials. Journal of Materials Research and Technology, 15: 3733–3758. DOI: 10.1016/j.jmrt.2021.09.114.
  • Ismail A.R., Aftab A., Ibupoto Z.H., Zolkifile N., 2016. The Novel Approach for the Enhancement of Rheological Properties of Water-Based Drilling Fluids by Using Multi-Walled Carbon Nanotube, Nanosilica and Glass Beads. Journal of Petroleum Science and Engineering,139: 264–275. DOI: 10.1016/j.petrol.2016.01.036.
  • Jankiewicz B.J., Choma J., Jamiola D., Jaroniec M., 2010. Nanostruktury krzemionkowo-metaliczne. I. Otrzymywanie i modyfikacja nanocząstek krzemionkowych. Wiadomości Chemiczne, 64: 913–942.
  • Janota M., Bielewicz D., Witek E., 2002. Poliamfolit poli(KAMPS-co-VAm) – nowy polimer do regulacji parametrów reologicznych i filtracji płuczek wiertniczych. Wiertnictwo, Nafta, Gaz, 19(1): 99–110.
  • Jasiński B., 2017. Analiza skuteczności działania dodatków smarnych na podstawie badań przeprowadzonych z użyciem symulatora wiercenia Grace M2200. Nafta-Gaz, 73(4): 257–265. DOI: 10.18668/NG.2017.04.06.
  • Jasiński B., 2018. Określenie dynamicznej filtracji płuczek wiertniczych w warunkach HPHT z użyciem nowatorskiej metody pomiarowej. Nafta-Gaz, 74(2): 85–95. DOI: 10.18668/NG.2018.02.02.
  • Kazemi-Beydokhti A., Hajiabadi S.H., 2018. Rheological Investigation of Smart Polymer/Carbon Nanotube Complex on Properties of Water-Based Drilling Fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 556: 23−29. DOI: 10.1016/j.colsurfa.2018.07.058.
  • Kolahalam L.A., Kasi Viswanath I.V., Diwakar B.S., Govindh B., Reddy V., Murthy Y.L.N., 2019. Review on Nanomaterials: Synthesis and Applications. Materials Today: Proceedings, 18: 2182–2190. DOI: 10.1016/j.matpr.2019.07.371.
  • Kosynkin D.V., Ceriotti G., Wilson K.C., Lomeda J.R., Scorsone J.T., Patel A.D., Friedheim J.E., Tour J.M., 2012. Graphene Oxide as a High-Performance Fluid-Loss-Control Additive in Water-Based Drilling Fluids. ACS Applied Materials and Interfaces, 4(1): 222–227. DOI: 10.1021/am2012799.
  • Liu S., Yao F., Kang M., Zhao S., Huang Q., Fu G., 2017. Hierarchical Xanthan Gum/Graphene Oxide Nanocomposite Film Induced by Ferric Ions Coordination. Materials & Design, 113: 232–239. DOI: 10.1016/j.matdes.2016.09.105.
  • Magne T.M., de Oliveira Vieira T., Costa B., Alencar L.M.R., Ricci-Junior E., Hu R., Qu J., Zamora-Ledezma C., Alexis F., Santos- -Oliveira R., 2021. Factors Affecting the Biological Response of Graphene. Colloids Surfaces B: Biointerfaces, 203: 111767. DOI:10.1016/j.colsurfb.2021.111767.
  • Mahmoud O., Nasr-El-Din H.A., Vryzas Z., Kelessidis V.C., 2016. Nanoparticle-Based Drilling Fluids for Minimizing Formation Damage in HP/HT Applications. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA. DOI:10.2118/178949-MS.
  • Novara R., Rafati R., Sharifi Haddad A., 2021. Rheological and Filtration Property Evaluations of the Nano-Based Muds for Drilling Applications in Low Temperature Environments. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 622: 126632.DOI: 10.1016/j.colsurfa.2021.126632.
  • Perween S., Thakur N.K., Beg M., Sharma S., Ranjan A., 2019. Enhancing the Properties of Water Based Drilling Fluid Using Bismuth Ferrite Nanoparticles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 561: 165–177. DOI: 10.1016/j.colsurfa.2018.10.060.
  • Ponmani S., Nagarajan R., Sangwai J.S., 2016. Effect of Nanofluids of CuO and ZnO in Polyethylene Glycol and Polyvinylpyrrolidone on the Thermal, Electrical, and Filtration-Loss Properties of Water-Based Drilling Fluids. SPE Journal, 21(2): 405–415. DOI: 10.2118/178919-PA.
  • Rafati R., Smith S.R., Sharifi Haddad A., Novara R., Hamidi H., 2018. Effect of Nanoparticles on the Modifications of Drilling Fluids
  • Properties: A Review of Recent Advances. Journal of Petroleum Science and Engineering, 161: 61–76. DOI: 10.1016/j.petrol.2017.11.067.
  • Rafieefar A., Sharif F., Hashemi A., Bazargan A.M., 2021. Rheological Behavior and Filtration of Water-Based Drilling Fluids Containing Graphene Oxide: Experimental Measurement, Mechanistic Understanding, and Modeling. ACS Omega, 6(44): 29905–29920. DOI:10.1021/acsomega.1c04398.
  • Ragab A.M., Noah, A.Z., 2014. Reduction of Formation Damage and Fluid Loss using Nano-sized Silica Drilling Fluids. Petroleum Technology Development Journal: An International Journal, 2: 75–88.
  • Saffari H.R.M., Soltani R., Alaei M., Soleymani M., 2018. Tribological Properties of Water-Based Drilling Fluids with Borate Nanoparticles as Lubricant Additives. Journal of Petroleum Science and Engineering, 171: 253–259. DOI: 10.1016/j.petrol.2018.07.049.
  • Samsuri A., Hamzah A., 2011. Water Based Mud Lifting Capacity Improvement by Multiwall Carbon Nanotubes Additive. Journal of Petroleum and Gas Engineering, 2(5): 99–107.
  • Sensoy T., Chenevert M.E., Sharma M.M., 2009. Minimizing Water Invasion in Shales Using Nanoparticles. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana. DOI: 10.2118/124429-MS.
  • Sharma M.M., Chenevert M.E., Guo Q., Ji L., Friedheim J., Zhang R., 2012. A New Family of Nanoparticle Based Drilling Fluids. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA. DOI: 10.2118/160045-MS.
  • Srivatsa J.T., Ziaja M.B., 2011. An Experimental Investigation on Use of Nanoparticles as Fluid Loss Additives in a Surfactant – Polymer Based Drilling Fluids. International Petroleum Technology Conference, Bangkok, Thailand. DOI: 10.2523/IPTC-14952-MS.
  • Suppan G., Briones-Macías M., Pazmiño-Arias E., Zamora-Ledezma C., 2021. Fabrication and Characterization of Metal-Free Composite Electrodes Based on Few-Layer-Graphene Nanoplatelets for Oxygen Reduction Reaction Applications. Physica Status Solidi, 258: 2000515.DOI: 10.1002/pssb.202000515.
  • Taha N.M., Lee S., 2015. Nano Graphene Application Improving Drilling Fluids Performance. International Petroleum Technology Conference, Doha, Qatar. DOI: 10.2523/IPTC-18539-MS.
  • Torres-Canas F., Blanc C., Mašlík J., Tahir S., Izard N., Karasahin S., Castellani M., Dammasch M., Zamora-Ledezma C., Anglaret E., 2017. Morphology and Anisotropy of Thin Conductive Inkjet Printed Lines of Single-Walled Carbon Nanotubes. Materials Research Express,4(3): 035037. DOI: 10.1088/2053-1591/aa5687.
  • Torres-Canas F.J., Blanc C., Zamora-Ledezma C., Silva P., Anglaret E., 2015. Dispersion and Individualization of SWNT in Surfactant-Free Suspensions and Composites of Hydrosoluble Polymers. Journal of Physical Chemistry C, 119(1): 703–709. DOI: 10.1021/jp5092015.
  • Vryzas Z., Kelessidis V.C., 2017. Nano-Based Drilling Fluids: A Review. Energies, 10(4): 540. DOI: 10.3390/en10040540.
  • Wan K., Li Y., Wang Y., Wei G., 2021. Recent Advance in the Fabrication of 2D and 3D Metal Carbides-Based Nanomaterials for Energy and Environmental Applications. Nanomaterials, 11(1): 246. DOI: 10.3390/nano11010246.
  • William J.K.M., Ponmani S., Samuel R., Nagarajan R., Sangwai J.S., 2014. Effect of CuO and ZnO Nanofluids in Xanthan Gum on Thermal, Electrical and High Pressure Rheology of Water-Based Drilling Fluids. Journal of Petroleum Science and Engineering, 117: 15–27. DOI:10.1016/j.petrol.2014.03.005.
  • Xiao H., Liu S., 2017. 2D Nanomaterials as Lubricant Additive: A Review. Materials & Design, 135: 319–332. DOI: 10.1016/j.matdes.2017.09.029.
  • Zamora-Ledezma C., Chicaiza-Zambrano A., Santiago Vispo N., Debut A., Vizuete K., Guerrero V.H., Almeida C.E., Alexis F., 2021. Frequency Based Control of Antifouling Properties Using Graphene Nanoplatelet/Poly(Lactic-Co-Glycolic Acid) Composite Films. Composite Interfaces, 28(11): 1137–1153. DOI: 10.1080/09276440.2020.1865088.
  • Zamora-Ledezma C., Narváez-Muñoz C., Guerrero V.H., Medina E., Meseguer-Olmo L., 2022. Nanofluid Formulations Based on Two-Dimensional Nanoparticles, Their Performance, and Potential Application as Water-Based Drilling Fluids. ACS Omega, 7(24):20457–20476. DOI: 10.1021/acsomega.2c02082.
  • Zhou G., Qiu Z., Zhong H., Zhao X., Kong X., 2021. Study of Environmentally Friendly Wild Jujube Pit Powder as a Water-Based Drilling Fluid Additive. ACS Omega, 6(2): 1436–1444. DOI: 10.1021/acsomega.0c05108.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-299fde88-2236-424e-b9cc-9a9834b57a78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.