Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study was attempted to highlight a novel direct reaction synthesis in which traditional casting plus rapid solidification techniques were implemented to produce Al-7079-TiC in situ composites with homogenous microstructure and improved dispersion strengthening by the reinforcing phases. Casted samples were effectively characterized by scanning electron microscopy followed by energy dispersive spectroscopy and X-ray diffraction. Ingot metallurgy showed a homogenous distribution of TiC particles inside the grain. This particle behavior acted as an excellent nucleation sites for the Al dendrites to grow unvaryingly. TiC reinforcements have semi coherent relationship with α-Al matrix. It was observed that eutectic boundary includes the second phases based on η (MgZn2) and Mg(Zn, Cu, Al)2. Almost 90% of the in situ reinforced TiC were homogenously distributed along the center of the grain. Thermal history conditions have shown an exothermic behavior during casting. Experimental results revealed the evolution of TiC particles in super-heated melt region, i.e. dissolution of titanium continued by reaction of titanium with diffused carbon in the Al matrix to form TiC particles. Further they acted as nucleation sites for the α-Al dendrites to grow homogenously. This study presents optimum process temperature for the Al-TiC in situ synthesis.
Czasopismo
Rocznik
Tom
Strony
63--78
Opis fizyczny
Bibliogr. 47 poz., fot., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
autor
- School of Mechanical Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 751013, India
autor
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667, India
Bibliografia
- [1] M. Alizadeh, Strengthening mechanisms in particulate Al/B4C composites produced by repeated roll bonding process, J. Alloys Compd. 509 (2011) 2243–2247. , http://dx.doi.org/10.1016/j.jallcom.2010.11.004.
- [2] P. Li, E.G. Kandalova, V.I. Nikitin, In situ synthesis of Al-TiC In aluminum melt, Mater. Lett. 59 (2005) 2545–2548. , http://dx.doi.org/10.1016/j.matlet.2005.03.043.
- [3] S. Tjong, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R: Rep. 29 (2000) 49–113. , http://dx.doi.org/10.1016/S0927-796X(00) 00024-3.
- [4] J.W. Kaczmar, K. Pietrzak, W. Wlosinski, The production and application of metal matrix composite materials, J. Mater. Process. Technol. 106 (2000) 58–67. , http://dx.doi.org/10.1016/S0924-0136(00)00639-7.
- [5] B.S.B. Reddy, K. Das, S. Das, A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical-thermal activation of chemical reactions, J. Mater. Sci. 42 (2007) 9366–9378. , http://dx.doi.org/10.1007/s10853-007-1827-z.
- [6] X.C. Tong, Fabrication of in situ TiC reinforced aluminum matrix composites. Part I: Microstructural characterization, J. Mater. Sci. 33 (1998) 5365–5374.
- [7] W.H. Jiang, G.H. Song, X.L. Han, C.L. He, H.C. Ru, Synthesis of TiC/Al composites in liquid aluminium, Mater. Lett. 32 (1997) 63–65. , http://dx.doi.org/10.1016/S0167-577X(97)00011-6.
- [8] L. Lü, M.O. Lai, J.L. Yeo, In situ synthesis of TiC composite for structural application, Compos. Struct. 47 (1999) 613–618. , http://dx.doi.org/10.1016/S0263-8223(00)00032-5.
- [9] F. Ma, T. Wang, P. Liu, W. Li, X. Liu, X. Chen, D. Pan, W. Lu, Mechanical properties and strengthening effects of in situ (TiB + TiC)/Ti-1100 composite at elevated temperatures, Mater. Sci. Eng. A 654 (2016) 352–358. , http://dx.doi.org/10.1016/j.msea.2015.12.071.
- [10] R.M. Aikin, The mechanical properties of in situ composites, JOM (1997) 35–39.
- [11] Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – Part I: An improved halide salt route to fabricate Al–5 wt% TiB2 master composite, Mater. Sci. Eng. A 605 (2014) 301–309. , http://dx.doi.org/10.1016/j.msea.2014.02.088.
- [12] A. Mandal, R. Maiti, M. Chakraborty, B.S. Murty, Effect of TiB2 particles on aging response of Al–4Cu alloy, Mater. Sci. Eng. A 386 (2004) 296–300. , http://dx.doi.org/10.1016/j.msea.2004.07.026.
- [13] S. Baskaran, V. Anandakrishnan, M. Duraiselvam, Investigations on dry sliding wear behavior of in situ casted AA7075-TiC metal matrix composites by using Taguchi technique, Mater. Des. 60 (2014) 184–192. , http://dx.doi.org/10.1016/j.matdes.2014.03.074.
- [14] P. Sahoo, M.J. Koczak, Analysis of in situ formation of titanium carbide in aluminum alloys, Mater. Sci. Eng. A 144 (1991) 37–44. , http://dx.doi.org/10.1016/0921-5093(91)90207-4.
- [15] P. Sahoo, M.J. Koczak, Microstructure-property relationships of in situ reacted TiC/Al-Cu metal matrix composites, Mater. Sci. Eng. A 131 (1991) 69–76.
- [16] M.S. Song, M.X. Zhang, S.G. Zhang, B. Huang, J.G. Li, In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting, Mater. Sci. Eng. A 473 (2008) 166–171. , http://dx.doi.org/10.1016/j.msea.2007.03.086.
- [17] S. Sheibani, M.F. Najafabadi, In situ fabrication of Al-TiC metal matrix composites by reactive slag process, Mater. Des. 28 (2007) 2373–2378. , http://dx.doi.org/10.1016/j.matdes.2006.08.004.
- [18] A. Kumar, M.M. Mahapatra, P.K. Jha, Modeling the abrasive wear characteristics of in-situ synthesized Al–4.5% Cu/TiC composites, Wear 306 (2013) 170–178. , http://dx.doi.org/10.1016/j.wear.2013.08.013.
- [19] B. Venkataraman, G. Sundararajan, The sliding wear behaviour of Al-SiC particulate composites—I. Macrobehaviour, Acta Mater. 44 (1996) 451–460.
- [20] G. Wang, P. Shi, M. Qi, J.J. Xu, F.X. Chen, D.Z. Yang, Dry sliding wear of a Ti50Ni25Cu25 particulate-reinforced aluminium matrix composite, Metall. Mater. Trans. A 29 (1998) 1741–1747.
- [21] B.J. Choi, I.Y. Kim, Y.Z. Lee, Y.J. Kim, Microstructure and friction/wear behavior of (TiB + TiC) particulate-reinforced titanium matrix composites, Wear 318 (2014) 68–77. , http://dx.doi.org/10.1016/j.wear.2014.05.013.
- [22] E.A. Starke, J.T. Staley, Application of modern aluminium alloys to aircraft, Prog. Aerosp. Sci. 32 (1996) 131–172.
- [23] J.T. Liu, Y.A. Zhang, X.W. Li, Z.H. Li, B.Q. Xiong, J.S. Zhang, Thermodynamic calculation of high zinc-containing Al-Zn-Mg-Cu alloy, Trans. Nonferrous Met. Soc. China (English Ed.) 24 (2014) 1481–1487. , http://dx.doi.org/10.1016/S1003-6326(14)63216-7.
- [24] R. Ghiaasiaan, B.S. Amirkhiz, S. Shankar, Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al-Zn-Mg-Cu (7000) alloys, Mater. Sci. Eng. A 698 (2017) 206–217. , http://dx.doi.org/10.1016/j.msea.2017.05.047.
- [25] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A 280 (2000) 102–107. , http://dx.doi.org/10.1016/S0921-5093(99)00674-7.
- [26] B.S. Yigezu, M.M. Mahapatra, P.K. Jha, On modeling the abrasive wear characteristics of in situ Al–12% Si/TiC composites, Mater. Des. 50 (2013) 277–284. , http://dx.doi.org/10.1016/j.matdes.2013.02.042.
- [27] V.A. Popov, E.V. Shelekhov, A.S. Prosviryakov, M.Y. Presniakov, B.R. Senatulin, A.D. Kotov, M.G. Khomutov, Particulate metal matrix composites development on the basis of in situ synthesis of TiC reinforcing nanoparticles during mechanical alloying, J. Alloys Compd. 707 (2017) 365–370. , http://dx.doi.org/10.1016/j.jallcom.2016.10.051.
- [28] Y. Birol, In situ synthesis of Al–TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium, J. Alloys Compd. 454 (2008) 110–117. , http://dx.doi.org/10.1016/j.jallcom.2006.12.016.
- [29] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites – a review, J. Mater. Sci. 26 (1991) 1137–1156. , http://dx.doi.org/10.1007/BF00544448.
- [30] T.S. Srivatsan, I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Processing techniques for particulate-reinforced metal aluminum matrix composites, J. Mater. Sci. 26 (1991) 5965–5978.
- [31] N. Samer, J. Andrieux, B. Gardiola, N. Karnatak, O. Martin, H. Kurita, L. Chaffron, S. Gourdet, S. Lay, O. Dezellus, Microstructure and mechanical properties of an Al–TiCmetal matrix composite obtained by reactive synthesis, Composites Part A: Appl. Sci. Manuf. 72 (2015) 50–57. , http://dx.doi.org/10.1016/j.compositesa.2015.02.001.
- [32] G.S. Pradeep Kumar, P.G. Koppad, R. Keshavamurthy, M. Alipour, Microstructure and mechanical behaviour of in situ fabricated AA6061–TiC metal matrix composites, Arch. Civ. Mech. Eng. 17 (2017) 535–544. , http://dx.doi.org/10.1016/j. acme.2016.12.006.
- [33] Y.L. Deng, L. Wan, L.H. Wu, Y.Y. Zhang, X.M. Zhang, Microstructural evolution of Al-Zn-Mg-Cu alloy during homogenization, J. Mater. Sci. 46 (2011) 875–881. , http://dx.doi.org/10.1007/s10853-010-4828-2.
- [34] M. Dellah, M. Bournane, K.A. Ragab, Y. Sadaoui, A.F. Sirenko, Early decomposition of supersaturated solid solutions of Al-Zn-Mg casting alloys, Mater. Des. 50 (2013) 606–612. , http://dx.doi.org/10.1016/j.matdes.2013.02.078.
- [35] J. Zang, K. Zhang, S. Dai, Precipitation behavior and properties of a new high strength Al-Zn-Mg-Cu alloy, Trans. Nonferrous Met. Soc. China 22 (2012) 2638–2644. , http://dx.doi.org/10.1016/S1003-6326(11)61511-2.
- [36] Y. Mishin, C. Herzig, Diffusion in the Ti–Al system, Acta Mater. 48 (2000) 589–623. , http://dx.doi.org/10.1016/S1359-6454(99)00400-0.
- [37] X.C. Tong, H.S. Fang, Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology: Part I, Metall. Mater. Trans. A 29 (1998) 875–891.
- [38] R. Rogers, Book review, Process Saf. Environ. Prot. 77 (1999) 371–372. , http://dx.doi.org/10.1016/S0957-5820(99)70836-0.
- [39] N. Ramakrishnan, An analytical study on strengthening of particulate reinforced metal matrix composites, Acta Mater. 44 (1996) 69–77. , http://dx.doi.org/10.1016/1359-6454(95)00150-9.
- [40] R.J. Mcelroy, Z.C. Szkopiak, Dislocation-substructurestrengthening and mechanical–thermal treatment of metals, Int. Metall. Rev. 17 (1972) 175–202.
- [41] S. Skirl, M. Hoffman, K. Bowman, S. Wiederhorn, J. Rödel, Thermal expansion behavior and macrostrain of Al2O3/Al. composites with interpenetrating networks, Acta Mater. 46 (1998) 2493–2499. , http://dx.doi.org/10.1016/S1359-6454(98)80033-5.
- [42] S. Elomari, R. Boukhili, D.J. Lloyd, Thermal expansion studies of prestrained Al2O3/Al metal matrix composite, Acta Mater. 44 (1996) 1873–1882. , http://dx.doi.org/10.1016/1359-6454(95)00299-5.
- [43] D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites, Int. Mater. Rev. 39 (1994) 1–23. , http://dx.doi.org/10.1179/imr.1994.39.1.1.
- [44] A. Rezaei, H.R. Madaah Hosseini, Evolution of microstructure and mechanical properties of Al–5 wt% Ti composite fabricated by P/M and hot extrusion: effect of heat treatment, Mater. Sci. Eng. A 689 (2017) 166–175. , http://dx.doi.org/10.1016/j.msea.2017.02.049.
- [45] Y. Liu, D. Jiang, B. Li, W. Yang, J. Hu, Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy, Mater. Des. 57 (2014) 79–86. , http://dx.doi.org/10.1016/j.matdes.2013.12.024.
- [46] Y. guo Liao, X. qi Han, M. xia Zeng, M. Jin, Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy, Mater. Des. 66 (2015) 581–586. , http://dx.doi.org/10.1016/j.matdes.2014.05.003.
- [47] A.R. Ragab, Modeling of the effect of cavitation on tensile failure of superplastic alloys, Mater. Sci. Eng. A 454–455 (2007) 614–622. , http://dx.doi.org/10.1016/j.msea.2006.11.093.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-299d7d6c-1042-4250-b54e-9eb026e987a9