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Abstract

This paper constructs and settles a charging facility location problem with the link ca-
pacity constraint over a mixed traffic network. The reason for studying this problem is
that link capacity constraint is mostly insufficient or missing in the studies of traditional
user equilibrium models, thereby resulting in the ambiguous of the definition of road
traffic network status. Adding capacity constraints to the road network is a compromise
to enhance the reality of the traditional equilibrium model. In this paper, we provide a
two-layer model for evaluating the efficiency of the charging facilities under the condi-
tion of considering the link capacity constraint. The upper level model in the proposed
bi-level model is a nonlinear integer programming formulation, which aims to maximize
the captured link flows of the battery electric vehicles. Moreover, the lower level model
is a typical traffic equilibrium assignment model except that it contains the link capacity
constraint and driving distance constraint of the electric vehicles over the mixed road net-
work. Based on the Frank-Wolfe algorithm, a modified algorithm framework is adopted
for solving the constructed problem, and finally, a numerical example is presented to ver-
ify the proposed model and solution algorithm.
Keywords: Traffic assignment problem, link capacity constraint, charging location, path
distance constraint.
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1 Introduction

With the rapid development of the automobile
industry in recent years, the increasing production
and usage of automobiles have led to increasingly
serious pollution to our environment. Finding al-
ternative fuels for gasoline vehicles is increasingly
counted as one of the most effective strategies to
reduce carbon dioxide and greenhouse gas emis-
sions [1, 2]. Electric vehicle as the development
trend of the future automobile has the advantages of
environmentally sustainable development, however,
it has not been widely used due to several bottle-
necks. One of the key bottlenecks is that the amount
of practical charging installations is still too small,
which makes the drivers feel anxious that the bat-
tery power of the electric vehicle will drop to zero
percent before arriving at their destinations (known
as range anxiety [3]). Moreover, the current per-
formance of electric vehicle batteries is not enough
to satisfy all users, which is also an important rea-
son for restricting the widespread use of electric
vehicles. For example, electric vehicles are obvi-
ously not the best choice for drivers who like long-
distance travel, because these drivers may need to
charge or change batteries frequently during their
long-distance travel. In a consequence of this, the
battery performance (longer/shorter battery life) of
electric vehicles directly affects the penetration of
electric vehicles in the vehicle market. The effective
way to solve these two bottlenecks is to improve
battery performance while deploying more charg-
ing stations on a certain scale of the transportation
network, which also demonstrates that high energy
batteries and fast charging and discharging technol-
ogy are the crucial challenges that electric vehicles
must overcome to achieve widespread adoption.

Except for the above improvements in battery
quality and the coverage of charging facilities, op-
timizing the location of charging facilities for elec-
tric vehicles is also a crucial step for the promotion
of electric vehicles. A properly positioned charging
device is conducive to improving the utilization rate
and further saving the construction cost of public
facilities. There exist many related studies on the
charging facilities location problem of electric ve-
hicles, such as [4, 5, 6, 7, 8, 9, 12, 13, 14]. Among
these studies, Frade and Ribeiro et all in [4] took
the capital of Portugal as an example to investigate
the charging location problem of electric vehicles

in employer-intensive areas. In a similar fashion in
[5], a case study from Beijing is conducted to give a
comprehensive analysis of three classic facility lo-
cation models from two aspects of supply and de-
mand, respectively. It should be noted that most
of the studies mentioned above are mostly based
on deterministic user equilibrium problems and it
is generally believed that the effective way to im-
prove the utilization of public charging facilities is
to configure them on the most commonly used roads
(flow-capturing location model). Research on the
flow-capturing location models can be traced back
to the 1990s, with one of the typical examples is
[7]. After that, the research in [8, 9] extended the
original model successively. Beyond these, with
the widespread use of genetic algorithms in vari-
ous fields [10, 11], there are also some studies that
use genetic algorithms to study the charging posi-
tion problem (see reference [12]). In addition to the
above user equilibrium problems related to the loca-
tion of charging facilities, there are also some stud-
ies on the optimal location of charging facilities for
electric vehicles based on the random user equilib-
rium problem, such as [13, 14]. Along with other
traces, the location model of electric vehicle charg-
ing device also needs to fully consider the vehicle
type, range anxiety, driving distance, battery capac-
ity, initial capacity, battery consumption rate, even
external temperature, and so on [15, 16, 17, 18, 19].

In this paper, we proposed a bi-level charg-
ing facilities location model to maximize the cap-
tured link flows of the battery electric vehicles.
The purpose of upper level model is to maximize
the covered electric vehicle flows under the as-
sumption that the electric vehicle flows remain un-
changed, and the lower layer invested a multiple ve-
hicle/mode class of user equilibrium problem. The
contributions of this paper are stated as follows.
Firstly, the bi-level model proposed in this paper is
based on a hybrid transportation network, which is
different from the most existing research that only
focuses on a single network [20]. It is more practi-
cal to consider a hybrid transport network, which
allows users to travel in multiple types of vehi-
cles with the increase of automobiles amount. Sec-
ondly, to the best of my knowledge, there are very
few studies on the charging location problem of the
electric vehicles that take both link capacity con-
straint and the driving distance constraint of the
electric vehicles into consideration, for example,
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[13, 20, 21], etc. In a consequence of this enlighten-
ment, we proposed a bi-level model that takes link
capacity constraint and path distance constraint into
account. Simulation results indicate that when the
maximum driving distance of the electric vehicle is
not considered, each driver will choose to use elec-
tric vehicles because of their low cost. Thirdly, the
proposed algorithm for the studied two-layer model
is different from the traditional way. The traditional
way, for instance, [22], to tackle the lower model is
to utilize the augmented Lagrange method to tackle
the link capacity constraints, but the lower-layer
model in this paper is converted to a linear program-
ming problem through a series of transformations,
and then settled efficaciously by virtue of Gurobi
solver [25].

The remainder of this paper is organized as fol-
lows. Section 2 gives the studied problem formu-
lation, problem analysis as well as optimality con-
ditions of the lower level model. Section 3 then es-
tablishes the solution method of the proposed model
and gives the concrete steps of the algorithm imple-
mentation, which is based on the Frank-Wolfe al-
gorithm. Section 4 utilizes the Nguyen-Dupuis net-
work to evaluate the presented algorithm. Finally,
the conclusions and future suggestions are given in
the Conclusion Section.

Notations:

A : index set of links on the road network,
A = {a|1,...,A}
a: link index, a ∈ A
A: total number of links on the road network

g: gasoline vehicles

e: electric vehicles

va: sum of traffic flow of gasoline vehicles and
electric vehicles on link a, that is, va = va,g + va,e

va,g: traffic flow of gasoline vehicles on link a

va,e: traffic flow of electric vehicles on link a

v: column vector of all link flows: v = (va)
T ∈ RA

with a ∈ A
x: column vector of all location variables:
x = (xa)

T ∈ RA with a ∈ A
xa: binary variable (xa = 1 indicates that a charging
facility has been installed on link a, xa = 0 means
not)

p: number of charging facilities planned for
installation on the road network, p > 0

ρ: value of time

vmax
a : maximum capacity of link a

ta: travel time of link a

t0
a : free-flow travel time of link a

β: function parameter

α: function parameter

cg: operating cost per mile of gasoline vehicles

ce: operating cost per mile of electric vehicles

ca,g: generalized travel cost of gasoline vehicles of
link a

ca,e: generalized travel cost of electric vehicles of
link a

f rs
k,g: traffic flow of gasoline vehicles on path k for

origin-destination (O-D) pair (r,s)

f rs
k,e: traffic flow of electric vehicles on path k for

O-D pair (r,s)

δrs
a,k: a parameter to mark the subordination of

routes and links (δrs
a,k = 1, if link a belongs to path

k, otherwise, δrs
a,k = 0)

D: maximum range limit for electric vehicles

lrs
k : length of path k for O-D pair (r,s),

lrs
k = ∑a δrs

a,kda

da: length of link a

qrs: travel demand for O-D pair (r,s)

⊥: orthogonal sign for two vectors

⊗: Kronecker product

I2: two-dimensional identity matrix

1m: m dimensional column vector with all the
entries are equal to 1

2 Problem definition

2.1 Problem formulation

In this subsection, we propose a bi-level charg-
ing facility location model that takes into account
the driving distance limit and link capacity con-
straint to maximize the total captured electric ve-
hicle link flows in a mixed network. The infras-
tructure developer (system designer) and the drivers
(system users) are specified as the upper and lower
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layers of this bi-level model, which can be solved
by an iterative scheme to reach an equilibrium state.
The upper level model is described as follows:

max
x ∑

a∈A
va,exa

s.t. ∑
a∈A

xa = p.
(1)

In terms of the above model, the objective of the
upper level is to maximize the covered electric ve-
hicles flows. The goal of the model is to maximize
the coverage of electric vehicle flows by deploying
a certain number of charging facilities p. We math-
ematically translate this concept into the sum of link
flows of electric vehicles only on links with charg-
ing facilities. More details can refer to the work in
[23, 24]. For the lower level model, it is character-
ized as an electric vehicles drivers’ route choice be-
havior problem with a generalized travel cost struc-
ture. Specifically, for any O-D pair (r,s), the lower
level model can be constructed as follow:

min
v ∑

a∈A

[
ρ
∫ va

0
ta (w)dw+(va,gcg + va,ece)da

]

s.t. ∑
k

(
f rs
k,g + f rs

k,e
)
= qrs, 0 � va � vmax

a ,
(
D− lrs

k

)
f rs
k,e � 0, f rs

k,g � 0, f rs
k,e � 0

(2)

where va,g = ∑rs ∑k f rs
k,gδrs

a,k represents the traffic
flow of gasoline vehicles on link a and va,e =

∑rs ∑k f rs
k,eδrs

a,k corresponds to the traffic flow of elec-
tric vehicles on link a. The travel time for each link
a is described as the following continuously differ-
entiable, increasing function:

ta (va) = t0
a

(
1+α

(
va

vmax
a

)β
)
. (3)

To simplify, we define the feasible region of equal-
ity and inequality constraints of (2) as Ω which will
be used in the following analysis. Intuitively, the
objective function of the above optimization model
(2) is an extension of the Beckmann transform, thus,
it is easy to prove that the objective function of the
optimization model (2) is convex and its feasible
region Ω is convex. Therefore, this model has a
unique solution.

Without loss of generality, the following as-
sumptions are declared throughout the paper:

(i) It is assumed that the hybrid (mixed) traffic net-
work in this paper refers to two categories of ve-
hicles over the whole network, including electric
vehicles and gasoline vehicles. Beyond that, it is
also assumed that all users studied in this paper
own both categories of vehicles.

(ii) The traffic demand for these two types of vehi-
cles is fixed and equal, and elastic and stochastic
demands is not taken into account.

(iii) The link flows of electric vehicles are identified
as covered if there exists a charging station on
this link.

(iv) The charging facility has enough electricity
to supply the electric vehicles in demand, and
the charging time is ignored in this study.

(v) Each electric vehicle is fully charged at the ori-
gin, which means that the maximum driving dis-
tance of the electric vehicle is not affected by the
initial charge before the vehicle leaves.

(vi) The stochastic user equilibrium is not included
in this study, which means we assumed that the
drivers always choose the least cost path from a
given origin to destination.

2.2 Problem analysis

In this subsection, we mainly analyse and trans-
form the lower level model (2). It is noted that the
low-level model is an extension of the traditional
user equilibrium problem. Different from the tradi-
tional user equilibrium problem, there are two in-
equality constraints related to traffic and route re-
spectively in problem (2). For the traditional user
equilibrium problem, there was no effective algo-
rithm until 1975 when Leblanc et al. used the
Frank-Wolfe algorithm to solve it [26]. The Frank-
Wolfe algorithm is effective for solving nonlinear
programming problems with linear constraints. The
basic idea of the Frank-Wolf algorithm is to use a
linearized algorithm to approximate the nonlinear
programming problem iteratively. However, since
there are two inequality constraints in model (2)
and these inequalities are not always guaranteed
to be true in the process of solving the problem,
the Frank-Wolf algorithm cannot be directly applied
to model (2). Therefore, before formally propos-
ing our algorithm, we need to modify the step of
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solving the feasible descent direction in the Frank-
Wolfe algorithm to ensure that the inequality con-
straints in (2) are always satisfied.

In what follows, we first give the following def-
initions to pave the way for the transformation of
model (2), and then point out that the descent di-
rection of the Frank-Wolfe algorithm can be solved
by finding the gradient of optimization model (2),
i.e. (6). Specifically, we abbreviate the objective
function in (2) as

S ( f rs)

= ∑
a∈A

[
ρ
∫ va

0
ta (w)dw+(va,gcg + va,ece)da

]
.

For a given network, we numbered the different O-
D pairs over the whole network from 1 to M, and
numbered the corresponding feasible paths of each
O-D pair as N1 and NM. Thus, M and N respec-
tively stand for the numbers of O-D pairs and the
possible paths for the specified O-D pair. Based on
these, redefine the decision variable of model (2) as
the following stacked vector:

f rsi =
[

f rsi
l,g , f rsi

l,e

]Ni

l=1
∈ R1×2Ni

where i ∈ {1,...,M} represents the ith O-D pair,
N1 +N2 + ...+NM = N. The superscript rsi of f rsi

represents the ith O-D pair (r,s). Hence, f rsi con-
sists of the path flow of gasoline vehicles and elec-
tric vehicles for ith O-D pair (r,s), in consequence,
we utilize f rs to represent an integrated vector con-
sisting of the corresponding path flow of two cat-
egories of vehicle types for different O-D pairs on
different paths in a certain order. More specifically,
let f rs be a vector that consists of N components,
that is,

f rs = [ f rsi , ..., f rsM ]T ∈ R2N .

Based on the Frank-Wolfe algorithm for user
equilibrium problem, the approximate linear objec-
tive function of model (2) can be obtained through
the first-order Taylor expansion for the objective
function of problem (2) in the nth iteration at f rs(n),
which is described as:

min
f rs

s.t.
[∇S ( f rs(n))]T · f rs

f rs ∈ Ω
(4)

where, as mentioned above, Ω stands for the short-
hand of the constraint set (feasible region) pre-
sented in model (2), and ∇S ( f rs (n)) represents the
gradient of the path flow f rs of objective function
S ( f rs) at iteration n:

∇S ( f rs (n))

=




[
∑

a∈A
δrsi

a,1ca,g (n),∑
a

δrsi
a,1ca,e (n)

]T

...[
∑

a∈A
δrsM

a,Nca,g (n),∑
a

δrsM
a,Nca,e (n)

]T



∈ R2N .

where ca,g = ρta (va) + cgda and ca,e = ρta (va) +
ceda are the generalized travel cost with respect
to gasoline and electric vehicles for any link
a ∈ A , respectively. Intuitively, the structure of
[∇S ( f rs (n))] ∈ R2N is complex according to the
specific form of ∇S ( f rs (n)) described above. To
simplify, Define the following stacked column vec-
tor

C (n) =
[

ca,g (n)
ca,e (n)

]A

a=1
∈ R2A

as a sum of energy cost and time cost of each link
over the road network. According to the specific
forms of ∇S ( f rs(n)) and C (n) presented above, we
can give its equivalent but simplified form as fol-
lows:

∇S ( f rs (n)) = δrs
I2

C (n) ∈ R2N (5)

where δrs
I2
= δrs ⊗ I2 ∈ R2N×2A. Given that the total

number of links in the road network is A, the to-
tal number of possible links is N, then the path-link
incidence matrix for the studied road network is as-
sumed to be δrs ∈ RN×A. For every possible path in
matrix δrs, the corresponding element is set as 1 if
the path contains the corresponding link, otherwise
0. In addition, for a given link a, C (n) is a constant
vector in the nth iteration, which can be abbreviated
to a constant vector C ∈ R2A.

Remark 1 The reason for expanding the matrix δrs

in equation (5) is that there may be two categories
of vehicles driving on the same link instead of just
one type of vehicle, therefore the path and link rela-
tion matrix should be extended to the matrix δrs

I2
.

Based on the above analysis, for any feasible
path k corresponding to O-D pair (r,s), the problem
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(4) can be transformed into the following equivalent
problem:

min
f rs

CT
(
[δrs

I2
]T f rs

)

s.t. ξ f rs = Qrs, ζT
[
δrs

I2

]T f rs ≤Va,(
D− lrs

k

)
f rs
k,e � 0, f rs

k,g � 0, f rs
k,e � 0,

(6)

where ζ and ξ are both superposition matrices, ζ =
IA ⊗1T

2 ,

ξ =




1T
2N1

0 0

0
. . . 0

0 0 1T
2NM


 ∈ RM×2N ,

Va = [vmax
i ]Ai=1 ∈ RA and Qrs =

[
qi
]M

i=1 ∈ RM. It
is noted that problem (6) is a linear programming
problem with the linear constraints.

2.3 Optimality conditions

The main purpose of this subsection is to prove
that the optimality conditions of (2) described
in subsection 2.1 are equivalent to the extended
Wardriop’s equilibrium principles. It can be stated
that the drivers’ choice of driving vehicle type and
route choice of drivers under equilibrium state is
ultimately the result of driving distance limit and
travel cost function.

For each O-D pair, we firstly give the La-
grangian function of the lower level model (2) as

L( f rs,γrs
k ,λ

rs
k ψa)

=∑
rs

∑
k

γrs
k

[
qrs −∑

k

(
f rs
k,g + f rs

k,e
)]

+S ( f rs)+ψa ∑
a∈A

(va − vmax
a )

+∑
rs

∑
k

λrs
k (lrs

k −D) f rs
k,e

(7)

where λrs
k , ψa and γrs

k are respectively the corre-
sponding Lagrange multipliers associated with in-
equality constraints (D− lrs

k ) f rs
k,e � 0, va � vmax

a , and
equality constraint ∑k ( f rs

k,g + f rs
k,e) = qrs. Conse-

quently, for any path k and link a, the optimal con-
ditions for the above Lagrangian function are listed
as follows:
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where the variable with superscript ∗ represents the
optimal solution corresponding to the variable. The
Wardrop principle states that the generalized travel
cost of the selected paths is identical and less than
or equal to the generalized travel cost of the non-
selected paths for any O-D pair over the traffic net-
work. Suppose ∑a∈A (ca,g +ψa)δrs

a,k = crs
k,g as the

generalized travel cost of the gasoline vehicles on
path k for O-D pairs (r,s), and denote γrs∗ existed
in the above optimal conditions as the lower limit
of generalized travel cost for O-D pairs (r,s). Ac-
cording to the formulas (8d), all drivers will choose
the gasoline vehicles for O-D pairs (r,s) when the
generalized travel cost of the gasoline vehicles on
path k for O-D pairs (r,s) is equal to the correspond-
ing minimum generalized travel cost γrs∗

k . Other-
wise, no drivers would choose the gasoline vehicles
if the generalized travel cost of the gasoline vehi-
cles on path k for O-D pairs (r,s) is higher than
the corresponding minimum generalized travel cost
γrs∗

k . Similarly to the definition of the generalized
travel cost of the gasoline vehicles crs

k,g, denote the
generalized travel cost of the electric vehicles as a
sum of two components: crs

k,e = ∑a (ca,e +ψa)δrs
a,k+

λrs∗
k

(
lrs
k − D

)
, where ∑a (ca,e +ψa)δrs

a,k represents
the the path travel cost and λrs∗

k

(
lrs
k − D

)
is the

out-of-range cost when the path length exceeds the
maximum distance limit of electric vehicles. Thus,
as for formulas (8e), if there exist the electric ve-
hicle flows on this path, the distance of this path
is shorter than the driving distance limit and the
generalized travel cost equals to the correspond-
ing lower limit of generalized travel cost. There-
fore, (8a) and (8e) collaboratively describe the sit-
uation that the distance of some but not all paths
is shorter than the maximum travel distance of the
electric vehicles for O-D pair (r,s). For this situ-
ation, some drivers choose to use electric vehicles
under the condition that the generalized travel cost
crs

k,e of the gasoline vehicles on path k for O-D pairs
(r,s) equal to the corresponding minimum general-
ized travel cost ξrs∗, other will choose the gasoline
vehicles if crs

k,g = γrs∗ holds.
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(4) can be transformed into the following equivalent
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(6)

where ζ and ξ are both superposition matrices, ζ =
IA ⊗1T

2 ,

ξ =




1T
2N1

0 0

0
. . . 0

0 0 1T
2NM


 ∈ RM×2N ,
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i ]Ai=1 ∈ RA and Qrs =

[
qi
]M

i=1 ∈ RM. It
is noted that problem (6) is a linear programming
problem with the linear constraints.
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as for formulas (8e), if there exist the electric ve-
hicle flows on this path, the distance of this path
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generalized travel cost equals to the correspond-
ing lower limit of generalized travel cost. There-
fore, (8a) and (8e) collaboratively describe the sit-
uation that the distance of some but not all paths
is shorter than the maximum travel distance of the
electric vehicles for O-D pair (r,s). For this situ-
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3 Solution method

In this section, we will present the designed al-
gorithm to tackle the proposed bi-level problem, in
which the upper level model involves bilinear func-
tions while the lower level model is a user equilib-
rium assignment problem considering the capacity
constraint for each link over the whole network. In
the initial state, we assume that there are no charg-
ing facilities in the transportation network. The ini-
tial flow state of electric and gasoline vehicles is
obtained by solving the traffic equilibrium problem
under various constraints. Perform the upper model
to get a maximum of the covered electric vehicle
flows of the charging device location. Record the
charging facility location and compare it with the
optimal charging device location obtained next it-
eration. If the position of charging facilities does
not change, the current recorded charging position
is taken as the optimal solution and the problem is
terminated. Otherwise, the lower problem needs to
be solved again to find a better solution. The de-
tailed steps of the feasible solution iteration algo-
rithm are listed as follows.

Step 1. Let the iteration counter τ of the upper level
problem be 1. Initializing the charging facility, that
is, suppose there is no charging facility in the whole
mixed network and slack the driving distance limit
of electric vehicles, eventually, we can obtain the
initial link flow pattern.

Step 2. Set τ = τ+1. Sort all links in ascending or-
der of their BEV flows over the whole network and
find the top p of them. Locate the charging facilities
in the middle of p links.

Step 3. Perform user equilibrium assignment in the
mixed network. The specific implementation pro-
cedure goes as follows:

Step 3.1 (Initialization). For each O-D pair (r,s), a
group of link flows are generated randomly, which
meet the constraints listed in (2). This yields link
flows va,g (1) and va,e (1). Let the loop counter be
n = 1.

Step 3.2 (Update). Update the link cost in terms of
va,g (1) and va,e (1).

Step 3.3 (Direction finding). Based on the link cost
deduced from Step 3.2, the feasible descending di-
rection is determined by the linear programming
problem described in subsection 2.2 Problem anal-

ysis of Section 2 and the resulting link flows yield
auxiliary flows ya,g (1) and ya,e (1) for any link a.

Step 3.4 (Line search). Apply any interval reduc-
tion line search method to find the optimal value of
θ by solving

min
0<θ<1




∑
a∈A

[ρ
∫ va(n)+θ(ya(n)−va(n))

0
ta (w)dw

+da [(va,g (n)+θ(ya,g (n)− va,g (n)))cg

+(va,e (n) +θ(ya,e (n)− va,e (n)))ce]]




Step 4 (Move). Obtain the new flow pattern of the
mixed network in terms of the following rules:

va,e(n+1) = va,e(n)+θ(ya,e(n)− va,e(n)) , ∀a,

va,g(n+1) = va,g(n)+θ(ya,g(n)− va,g(n)) , ∀a.

Step 5 (Convergence test). Let

v̄a(n) =
1
m
(va(n)+ va(n−1)+ ...+ va(n−m+1))

hold, and the values of m and n are identical and
both are positive integers. If the convergence crite-
rion

√
∑a∈A (v̄a(n+1)− v̄a(n))

2

∑a∈A v̄a(n)
� ρ

is not satisfied, set n= n+1 and go to Step 3.2; oth-
erwise, stop and va(n+1) and va,e(n+1) are equi-
librium link flows of total vehicle flow and electric
vehicle flow for each link a, respectively.

Step 6. Perform the Step 2 to renew the present
charging device location. Identify whether the po-
sition of the latter charging device location changes
with that of the former one, jump to Step 3 if the
judgment is positive, otherwise, stop and keep a
record of the current locations.

4 Numerical experiment

In this section, a numerical example is pre-
sented to look into the link-flow patterns of gaso-
line and electric vehicles given different driving dis-
tance limits and link capacity constraints. The road
network used in this section is the Nguyen-Dupuis
network in [13], which is shown as Figure 1. In-
tuitively, there exist 4 O-D pairs, 13 nodes, and 19
links in this road network.
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Table 1. The demand-dependent input parameters
of Nguyen-Dupuis network.

O-D O-D O-D O-D
pair demand pair demand
(1,2) 200 (1,3) 300
(4,2) 300 (4,3) 200

The four colored nodes in Figure 1 represent
two origins (nodes 1 and 2) and two destinations
(nodes 3 and 4) of the directed Nguyen-Dupius net-
work, which indicates that there exist four O-D
pairs (1,2), (1,3), (4,2) and (4,3). In addition, the
directional arrows in Figure 1 denote the direction
of vehicle flow between two nodes, and the number
marked on each link is its serial number. The traffic
demand of Nguyen-Dupuis for each O-D pair over
the whole network is presented in Table 1.

Figure 1. Nguyen-Dupius network

Table 2 shows the corresponding route infor-
mation for different O-D pairs over the Nguyen-
Dupuis network, while the longest and shortest
paths are marked in bold. In this experiment, the
relevant parameters are set as follows. We assume
that only five charging facilities are allowed to be
installed in the whole Nguyen-Dupuis network to
charge the electric vehicle, and only one charging
pile can be installed in each link, which obviously
results in p = 5. Following the existing studies that
also utilized BPR function [27], set the function co-
efficients α and β in travel time function (3) on link
a as 0.15 and 4, respectively. The value of time
ρ = 4, cg = 0.16 and ce = 0.04 are the component
parameters of the generalized travel cost of gasoline
and electric vehicle on link a separately.

Table 2. The routing information of
Nguyen-Dupuis network.

O-D Route Route Route
pair number composition length

1 1-5-6-7-8-2 29
2 1-5-6-7-11-2 33
3 1-5-6-10-11-2 38

(1,2) 4 1-5-9-10-11-2 41
5 1-12-6-7-8-2 35
6 1-12-6-7-11-2 39
7 1-12-6-10-11-2 44
8 1-12-8-2 32
9 1-5-6-7-11-3 32
10 1-5-6-10-11-3 37

(1,3) 11 1-5-9-10-11-3 40
12 1-5-9-13-3 36
13 1-12-6-7-11-3 38
14 1-12-6-10-11-3 43
15 4-5-6-7-8-2 31
16 4-5-6-7-11-2 35

(4,2) 17 4-5-6-10-11-2 40
18 4-5-9-10-11-2 43
19 4-9-10-11-2 37
20 4-5-6-7-11-3 34
21 4-5-6-10-11-3 39

(4,3) 22 4-5-9-10-11-3 42
23 4-5-9-13-3 38
24 4-9-10-11-3 36
25 4-9-13-3 32

Assume the maximum range limit for electric
vehicles is D = 37. Table 3 contains three types of
information, namely, link length, link capacity, and
equilibrium link flow. It should be noted that we
have given two kinds of experimental results on the
total equilibrium flow on each link: one contains
link-free capacity constraints and the other contains
link-capacity constraints, whose corresponding re-
sults are described by the inclusion and exclusion
columns in Table 3.
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Table 2 shows the corresponding route infor-
mation for different O-D pairs over the Nguyen-
Dupuis network, while the longest and shortest
paths are marked in bold. In this experiment, the
relevant parameters are set as follows. We assume
that only five charging facilities are allowed to be
installed in the whole Nguyen-Dupuis network to
charge the electric vehicle, and only one charging
pile can be installed in each link, which obviously
results in p = 5. Following the existing studies that
also utilized BPR function [27], set the function co-
efficients α and β in travel time function (3) on link
a as 0.15 and 4, respectively. The value of time
ρ = 4, cg = 0.16 and ce = 0.04 are the component
parameters of the generalized travel cost of gasoline
and electric vehicle on link a separately.

Table 2. The routing information of
Nguyen-Dupuis network.

O-D Route Route Route
pair number composition length

1 1-5-6-7-8-2 29
2 1-5-6-7-11-2 33
3 1-5-6-10-11-2 38

(1,2) 4 1-5-9-10-11-2 41
5 1-12-6-7-8-2 35
6 1-12-6-7-11-2 39
7 1-12-6-10-11-2 44
8 1-12-8-2 32
9 1-5-6-7-11-3 32

10 1-5-6-10-11-3 37
(1,3) 11 1-5-9-10-11-3 40

12 1-5-9-13-3 36
13 1-12-6-7-11-3 38
14 1-12-6-10-11-3 43
15 4-5-6-7-8-2 31
16 4-5-6-7-11-2 35

(4,2) 17 4-5-6-10-11-2 40
18 4-5-9-10-11-2 43
19 4-9-10-11-2 37
20 4-5-6-7-11-3 34
21 4-5-6-10-11-3 39

(4,3) 22 4-5-9-10-11-3 42
23 4-5-9-13-3 38
24 4-9-10-11-3 36
25 4-9-13-3 32

Assume the maximum range limit for electric
vehicles is D = 37. Table 3 contains three types of
information, namely, link length, link capacity, and
equilibrium link flow. It should be noted that we
have given two kinds of experimental results on the
total equilibrium flow on each link: one contains
link-free capacity constraints and the other contains
link-capacity constraints, whose corresponding re-
sults are described by the inclusion and exclusion
columns in Table 3.
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Table 3. The total link flow information under
whether or not the link capacity constraint is

included

Link
Number

Link
Length

Link
Capacity

Link flow

Inclusion Exclusion
1-5 7 300 300 300

1-12 9 200 300 200
4-5 9 350 200 0
4-9 12 300 300 500
5-6 3 200 200 0
5-9 9 350 300 300
6-7 5 200 200 0

6-10 13 300 0 0
7-8 5 200 100 0

7-11 9 300 100 0
8-2 9 300 300 200

9-10 10 350 300 300
9-13 9 300 300 500

10-11 6 300 300 300
11-2 9 300 200 300
11-3 8 300 200 0
12-6 7 300 0 0
12-8 14 200 200 200
13-3 11 300 300 500

From Table 3, it can be easily found that the link
flow sometimes exceeds the maximum capacity of
the corresponding link if the link capacity constraint
over the network is not considered (for example,
link numbers 4-9, 9-13 and 13-3), which is incon-
sistent with the premise of this study that there is
no blocking of the entire road network. In contrast,
if the link capacity constraint is always considered
in the process of solving the bi-level model, the ob-
tained link flow for each link will not exceed the
capacity of the corresponding link.

Moreover, we also conducted the sensitivity
analysis on the parameters of driving distance limit
D for electric vehicles. The reason why we analyse
the sensitivity of the distance limit of electric vehi-
cles is that the length of each link over the whole
network will affect the route selection behavior of
electric vehicle drivers. If the length of a link ex-
ceeds the maximum driving distance for an elec-
tric vehicle, it is clear that the route chosen by the
drivers will not include that route. The results of the
experiment also confirmed this fact. The details for
partial path flow of electric and gasoline vehicles
are shown in Figure 2 and Figure 3, respectively.
What needs to be explained is that only part of the

path flow information is given, and the path infor-
mation without traffic flow is omitted.
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Figure 2. The path flow of electric vehicles for
different O-D pairs
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Figure 3. The path flows of gasoline vehicles for
different O-D pairs

As can be seen from the Figure 2 and Figure
3, the path selection of the fixed O-D pair by the
driver of an electric vehicle is closely related to the
maximum driving distance. For example, based on
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Table 2, we obtain that there is no feasible path for
the electric vehicle for OD pair (1,2) when the max-
imum driving distance of the electric vehicle is 32,
all the drivers choose gasoline vehicles to achieve
their travel plans from origin 1 to destination 2 un-
der Table 3. Specifically, the flow of electric vehi-
cles on the link included in the path for O-D pair
(1,2) becomes 0 while the flow of gasoline vehicles
is 200, which is consistent with the results in Figure
2 and Figure 3.
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Figure 4. The relationship between the maximum
travel distance of electric vehicle and total cover

electric vehicle flow

Except for the above experimental results, we
utilize Figure 4 to depict the relationship between
the maximum driving distance of electric vehicles
and its total covered flow of charging facilities. In-
tuitively, the greater the maximum range of electric
vehicles, the greater the number of possible routes,
thus increasing the utilization of each link over the
entire network. Assuming that the charging facil-
ities are installed in several high traffic links, the
total covered traffic flow will inevitably increase or
at least remain unchanged. Figure 4 illustrates the
same phenomenon that the total covered electric ve-
hicle flows remain unchanged or increase with the
increase of maximum range for electric vehicles. In
addition to the horizontal observation, it can also be
seen from the vertical comparison in Figure 4 that
when the maximum driving distance of electric ve-
hicles is not considered, more drivers will choose
to use electric vehicles if the cost of fuel vehicles is
greater than that of electric vehicles. Beyond these,
according to Figure 4, even though the cost of gaso-
line vehicles is greater than that of electric vehicles
the total cover of electric vehicle flow remains un-
changed due to the limit of the maximum driving
distance if the maximum range of electric vehicles
is less than 35. On the contrary, when the maximum

range of electric vehicles is greater than 35, more
drivers choose to travel by electric vehicle. There-
fore, there is a close relationship between battery
performance and whether users choose electric ve-
hicles for travel.

Conclusion

This paper studies the location problem of elec-
tric vehicle charging facilities in a hybrid traffic
network, and puts forward a bi-level mathemati-
cal model considering the constraints of maximum
driving distance of the electric vehicle and link ca-
pacity for each link, which is more reasonable than
the traditional traffic assignment problem. The hy-
brid traffic network in this paper refers to two types
of vehicles, namely electric vehicles and gasoline
vehicles. In view of the fact that many current user
equilibrium traffic assignments do not consider the
constraints of link capacity, based on the Frame-
work of Frank-Wolf method, this paper makes a
detailed analysis of this problem, i.e. the low-
level model, from another perspective based on the
Frank-Wolf method framework. The results of nu-
merical examples show that the drivers’ routing se-
lection is closely related to the maximum driving
distance of the electric vehicles and the maximum
flow constraint of each link. In addition, the ap-
plication of the proposed algorithm for the repre-
sentative Nguyen-Dupius network shows that the
solution process is applicable to the general net-
work with link capacity constraints, which theoret-
ically provides another perspective for the study of
the charging position of electric vehicles over the
mixed road network. In the future, considering that
the actual traffic demand is time-varying, it is of
great significance to determine the charging posi-
tion of electric vehicles in the dynamic traffic net-
work by taking this dynamic characteristic into ac-
count.
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at least remain unchanged. Figure 4 illustrates the
same phenomenon that the total covered electric ve-
hicle flows remain unchanged or increase with the
increase of maximum range for electric vehicles. In
addition to the horizontal observation, it can also be
seen from the vertical comparison in Figure 4 that
when the maximum driving distance of electric ve-
hicles is not considered, more drivers will choose
to use electric vehicles if the cost of fuel vehicles is
greater than that of electric vehicles. Beyond these,
according to Figure 4, even though the cost of gaso-
line vehicles is greater than that of electric vehicles
the total cover of electric vehicle flow remains un-
changed due to the limit of the maximum driving
distance if the maximum range of electric vehicles
is less than 35. On the contrary, when the maximum

range of electric vehicles is greater than 35, more
drivers choose to travel by electric vehicle. There-
fore, there is a close relationship between battery
performance and whether users choose electric ve-
hicles for travel.

Conclusion

This paper studies the location problem of elec-
tric vehicle charging facilities in a hybrid traffic
network, and puts forward a bi-level mathemati-
cal model considering the constraints of maximum
driving distance of the electric vehicle and link ca-
pacity for each link, which is more reasonable than
the traditional traffic assignment problem. The hy-
brid traffic network in this paper refers to two types
of vehicles, namely electric vehicles and gasoline
vehicles. In view of the fact that many current user
equilibrium traffic assignments do not consider the
constraints of link capacity, based on the Frame-
work of Frank-Wolf method, this paper makes a
detailed analysis of this problem, i.e. the low-
level model, from another perspective based on the
Frank-Wolf method framework. The results of nu-
merical examples show that the drivers’ routing se-
lection is closely related to the maximum driving
distance of the electric vehicles and the maximum
flow constraint of each link. In addition, the ap-
plication of the proposed algorithm for the repre-
sentative Nguyen-Dupius network shows that the
solution process is applicable to the general net-
work with link capacity constraints, which theoret-
ically provides another perspective for the study of
the charging position of electric vehicles over the
mixed road network. In the future, considering that
the actual traffic demand is time-varying, it is of
great significance to determine the charging posi-
tion of electric vehicles in the dynamic traffic net-
work by taking this dynamic characteristic into ac-
count.
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