PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D numerical analysis of the seismic response of a karst rock mass: importance of underground caves and geostructural details

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study shows the results of a 2D local seismic response (LSR) analysis, simulated for a geomechanical model consisting of a layered carbonate rock mass with hypogean karst caves and a structural–lithostratigraphic complex setting, in an area within the Municipality of Turi (Apulia, Italy). In this case study a Distinct Element Code (DEM) code (UDEC) was used for the LSR simulations conducted on a model both in the absence and in the presence of two overlapping karst caves. The preliminary stress–strain model analysis show some tensile yielding points clustered on the roof of the upper karst cave, already in static conditions, and the phenomenon becomes even more noticeable in dynamic conditions. This is perfectly in agreement with the real occurrence of a sinkhole that brought to the light the underlying karst cave, in the case study area, in the recent past. The amplification/deamplification factor (FA) was calculated as the ratio of the top value to the bottom value in the model, both of the max X-acceleration and of the spectral Fourier amplitude in three different ranges of frequencies, in order to estimate the effects of LSR on the X-component of the seismic input. According to the previous studies, the results obtained show a generalised deamplification of the seismic ground motion at the top of the model, both without and with underground karst caves, caused by the presence of the upper karst cave and by the seismic energy absorption because of layers’ discontinuity.
Wydawca
Rocznik
Strony
61--73
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
  • Politecnico di Bari, Department of Civil, Environmental, Land, Building Engineering and Chemistry, via Orabona 4, 70125 Bari, Italy
  • Equienergia s.r.l., Via Domodossola 3, 20145 Milano, Italy
Bibliografia
  • [1] Pyrak-Nolte L. J., Myer L. R., Cook Neville G. W. - Transmission of Seismic Waves Across Single Natural Fractures. Journal of Geophysical Research, vol. 95, n° B6, 8617-8638, June 10, 1990.
  • [2] Ghosh A., Hsiung S. - Effects of tilted and faulted strata on seismic ground motion. U.S. Nuclear Regulatory Commission Contract NRC-02-07-006, Center for Nuclear Waste Regulatory Analyses, San Antonio, Texas, 2011.
  • [3] Rodriguez-Castellanos A., Sánchez-Sesma F. J., Luzón F., and Martin R. - Multiple scattering of elastic waves by subsurface fractures and cavities. in Bulletin of the Seismological Society of America, vol. 96, n. 4A, 1359-1374, 2006.
  • [4] Smerzini C., Avilés J., Sánchez‐Sesma F. J., and Paolucci R. - Analytical solutions for the seismic response of underground structures under SH wave propagation. AIP Conference Proceedings 1020, 674, https://doi.org/10.1063/1.2963900, 2008.
  • [5] Smerzini C., Avilés J., Paolucci R. and Sánchez-Sesma F. J. - Effect of underground cavities on surface earthquake ground motion under SH wave propagation. in Earthquake Engineering and Structural Dynamics, n.38, 1441-1460, 2009.
  • [6] Verrucci L, Lanzo G, Pagliaroli A, Sano` T. - Effects of cavities on seismic ground response. In: Procceding. Second international conference on performance-based design in earthquake geotechnical engineering, May 28-30 2012, Taormina (Italy), CDROM, paper #1.15, 2012.
  • [7] Sanò T. - Risposta sismica locale in aree con presenza di cavità. in Geologia dell’Ambiente - Supplemento al n.2/2013, 55-61, 2013.
  • [8] Itasca Consulting Group, Inc. “UDEC Version 4.0 User’s Guide.” Minneapolis, Minnesota: Itasca Consulting Group, Inc. 2011.
  • [9] Scotto di Santolo A., de Silva F., Calcaterra D., Silvestri F. - Site effects due to the presence of cavity near the cliffs. 6th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand, 2015.
  • [10] Evangelista L., Landolfi L., d’Onofrio A., Silvestri F. - The influence of the 3D morphology and cavity network on the seismic response of Castelnuovo hill to the 2009 Abruzzo earthquake. Bulletin of Earthquake Engineering, 14, 3363- 3387, DOI: 10.1007/s10518-016-0011-8, 2016.
  • [11] Piro A., de Silva F., Parisi F., Silvestri F., Scotto di Santolo A. - Interazione sismica tra terreno, cavità e struttura: un caso di studio nel centro storico di Sant’Agata de’ Goti. XXVI Convegno Nazionale di Geotecnica, Rome, Italy, June 2017.
  • [12] Fu X., Sheng Q., Zhang Y., Chen J., and Leng X. - Extension of the discontinuous deformation analysis method to simulate seismic response of a large rock cavern complex. Int. J. Geomech., 17(5):E4016008, DOI: 10.1061/(ASCE)GM.1943- 5622.0000712, (2016b).
  • [13] Hsiung S. M., Shi G. H. - Simulation of earthquake effects on underground excavations using discontinuous deformation analysis (DDA) [A]. In: Rock Mechanics for Industry [C], 1413- 1420, 1999.
  • [14] Ahola M.P., Chowdhury A.H. - Effect of seismic load on a proposed nuclear waste repository at Yucca Mountain. Inter. Jour. of Rock Mech. and Min. Science, 34 (3-4), ISSN 0148- 9062, 1997.
  • [15] Barla G., Monacis G., Perino A., Hatzor Y. H. - Distinct Element Modelling in Static and Dynamic Conditions with Application to an Underground Archaeological Site. Rock Mechanics and Rock Engineering, 43 (6), 877-890, 2010.
  • [16] Ciaranfi N., Pieri P., Ricchetti G. - Carta Geologica delle Murge e del Salento. Mem. Soc. Geol. It., 42, 1988.
  • [17] Cundall P.A., Hart R. D. - Development of generalized 2-D and 3-D distinct element programs for modeling jointed rock. Itasca Consulting Group, U.S. Army Corps of Engineers, Misc. Paper SL-85-1, 1985.
  • [18] Marcato G., Silvano S., Zabuski L. - Modellazione di ammassi rocciosi instabili con il metodo degli elementi distinti. Giornale di Geologia Applicata, 2, 87-92, DOI: 10.1474/GGA.2005-02.0- 12.0038, 2005.
  • [19] Bieniawski Z. T. - Engineering classification of jointed rock masses. Trans S. Afr., Inst. Civ. Engrs, 15, 335-344, 1973.
  • [20] Bruno G. - Caratterizzazione geomeccanica per la progettazione ingegneristica. Flaccovio Dario Editore, Palermo, ISBN 978-88- 579-0150-3, 2012.
  • [21] Hoek E., Kaiser P. K., Bawden W. F. - Support of underground excavations in hard rock. A.A. Balkema Ed., Rotterdam, 1998.
  • [22] Hoek E. & Brown E. T. - Empirical strength criterion for rock masses. J. Geotech. Engng Div., ASCE 106 (GT9), 1013-1035, 1980.
  • [23] Ministero Infrastrutture e Trasporti, DM 17 Gennaio 2018 - Aggiornamento delle «Norme tecniche per le costruzioni». Gazzetta Ufficiale della Repubblica Italiana, 42, 2018.
  • [24] Ambraseys N., Smit, P., Sigbjornsson R., Suhadolc P. and Margaris B. - Internet-Site for European Strong-Motion Data, European Commission, Research-Directorate General, Environment and Climate Programme, 2002.
  • [25] Ambraseys N. N., Douglas J., Rinaldis D., Berge-Thierry C., Suhadolc P., Costa G., Sigbjornsson R., Smit P. - Dissemination of European strong-motion data, Vol. 2, CD-ROM Collection, Engineering and Physical Sciences Research Council, UK, 2004.
  • [26] Iervolino I., Galasso C., Cosenza E. - REXEL: computer aided record selection for code-based seismic structural analysis. in Bulletin of Earthquake Engineering, n.8, 339-362, 2010.
  • [27] SeismoSignal_2018 rel.1 - Earthquake Engineering Software Solution. SEISMOSOFT Ltd., Pavia, 2018.
  • [28] Barbero M., Barla G., Demarie G. V. - Applicazione del Metodo degli Elementi Distinti alla dinamica di mezzi discontinui. Rivista Italiana di Geotecnica, 3, 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2991c4b2-1946-43fc-ac42-ad96b414107c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.