Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The thermal expansion of a ZrO2-20 mol% Gd2O3 pellet has been systematically investigated using a thermo-mechanical analyzer in the temperature range of 293-1773 K. Variations in the thermal expansion coefficient and density upon temperature change were calculated using the thermal expansion data. The average linear thermal expansion coefficient of theZrO2-20 mol% Gd2O3 pellet was found to be 9.522 × 10-6 K-1 in the range of 298-1073 K. This value is smaller than that of ZrO2 and larger than that of Gd2O3. Further, with an increase in temperature to 1773 K, the density of ZrO2-20 mol% Gd2O3 pellet was found to decrease to 94.98 % of the initial density at 293 K.
Wydawca
Czasopismo
Rocznik
Tom
Strony
909--912
Opis fizyczny
Bibliogr. 12 poz., fot., rys., wzory
Twórcy
autor
- Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
autor
- Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
autor
- Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
autor
- Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
Bibliografia
- [1] M. Kato, S. Kohno, and K. Kamimura, Development of duplex type MOX-Gd2O3 for water reactor, in: Technical Committee Meeting on Advances in Pellet Technology for Improved performance at High Burnup, Tokyo, Japan (1996).
- [2] K. Thae-Khapp, K. Il-Hiun, Y. Katano, N. Igawa, H. Ohno, J. Nucl. Mater. 209, 321 (1994). DOI: https://doi.org/10.1016/0022-3115(94)90270-4
- [3] S. Bhattacharyya, D.C. Agrawal, J. Mater. Sci. 37, 1387 (2002). DOI: https://doi.org/10.1023/A:1014572629824
- [4] S. Dutta, S. Bhattacharya, D.C. Agrawal, Mater. Sci. Eng. B 100, 191 (2003). DOI: https://doi.org/10.1016/S0921-5107(03)00105-3
- [5] J. Wang, A. Nakamura, M. Takeda, Solid State Ionics 164, 185 (2003). DOI: https://doi.org/10.1016/j.ssi.2003.09.003
- [6] J. Wang, H. Otobe, A. Nakamura, M. Takeda, J. Solid State Chem. 176, 105 (2003). DOI: https://doi.org/10.1016/S0022-4596(03)00353-0
- [7] M.N. Rahaman, J.R. Gross, R.E. Dutton, H. Wang, Acta Mater. 554, 1615 (2006).
- [8] Y.S. Touloukian, Thermophysical Properties of Matter, vol. 12, IFI/Plenum, New York (1970).
- [9] AC. Momin, M.D. Mathews, Indian J. Chem. 15a, 1096 (1977).
- [10] A. Özsunar, Materials and Design 29, 1690 (2008). DOI: https://doi.org/10.1016/j.matdes.2008.03.029
- [11] V. Grover, A.K. Tyagi, Mater. Res. Bull. 39, 859 (2004). DOI: https://doi.org/10.1016/j.materresbull.2004.01.007
- [12] J.J. Bentzen, H. Schwartzbach, Solid State Ionics 40-41, 942 (1990). DOI: https://doi.org/10.1016/0167-2738(90)90159-O
Uwagi
1. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (2021M2E3A1040059).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-298fb2e3-669f-43fc-8dcb-785f3da5f2b0