PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failure characteristics and strength model of composite rock samples in contact zone under compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Significant differences in the physical and mechanical properties exist between the rock masses on two sides of an ore-rock contact zone, which the production tunnels of an underground mine must pass through. Compared with a single rock mass, the mechanical behavior of the contact zone composite rock comprising two types of rock is more complex. In order to predict the overall strength of the composite rock with different contact angles, iron ore-marble composite rock sample uniaxial compression tests were conducted. The results showed that composite rock samples with different contact angles failed in two different modes under compression. The strengths of the composite rock samples were lower than those of both the pure iron ore samples and pure marble samples, and were also related to the contact angle. According to the stress-strain relationship of the contact surface in the composite rock sample, there were constraint stresses on the contact surface between the two types of rock medium in the composite rock samples. This stress state could reveal the effect of the constraint stress in the composite rock samples with different contact angles on their strengths. Based on the Mohr-Coulomb criterion, a strength model of the composite rock considering the constraint stress on the contact surface was constructed, which could provide a theoretical basis for stability researches and designs of contact zone tunnels.
Rocznik
Strony
347--361
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Met Allergic Mineral Resource, Wuhan 430081, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Met Allergic Mineral Resource, Wuhan 430081, China
autor
  • Daye Iron Mine Corporation Limited of Wisco Resource Group, Huangshi, Hubei 435006, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Met Allergic Mineral Resource, Wuhan 430081, China
Bibliografia
  • [1] Andjelkovic V., Pavlovic N., Lazarevic Z., Nedovic V., 2015. Modelling of shear characteristics at the concrete-rock mass interface. International Journal of Rock Mechanics and Mining Sciences 76, 222-236.
  • [2] Bhawani S., Goel R.K., Mehrotra V.K., Garg S.K., Allu M.R., 1998. Effect of intermediate principal stress on strength of anisotropic rock mass. Tunneling and Underground Space Technology 13 (1), 71-79.
  • [3] Gutiérrez-Ch J.G., Senent S., Melentijevic S., Jimenez R., 2018. Distinct element method simulations of rock-concrete interfaces under different boundary conditions. Engineering Geology 205, 123-139.
  • [4] Huang B., Jiangwei L., 2013. The effect of loading rat e on the behavior of samples composed of coal and rock. Inter-national Journal of Rock Mechanics and Mining Sciences 61, 23-30.
  • [5] Jie L., Enyuan W., Dazhao S., Siheng W., 2015. Effect o f rock strength on failure mode and mechanical behavior of com-posite samples. Arabian Journal of Geosciences 8 (7), 4527-4539.
  • [6] Krasnovskii A.A., Mirenkov V.E., 2007. Analysis of deformation of the compound rock blocks with cracks. Journal of Mining Science 43, 132-144.
  • [7] Krasnovsky A.A., 2019. Strength of inhomogeneous rib pillars. IOP Conference Series: Earth and Environmental Science 262, 012037.
  • [8] Li W., Li X., Han B., Shu Y., 2007. Recognition of creep model of layer composite rock mass and its application. Journal of Central South University of Technology 14 (1), 329-331.
  • [9] Li Y., Liu J., Yang C., 2006. Influence of mudstone int erlayer on deformation and failure characteristics of salt rock. Chinese Journal of Rock Mechanics and Engineering 25 (12), 2461-2466.
  • [10] Liang W., Yang C., Zhao Y., Dusseault M.B., Liu J., 2007. Experimental investigation of mechanical properties of bedded salt rock. Journal of Rock Mechanics and Mining Sciences 44 (3), 400-411.
  • [11] Liu X.S., Tan Y.L., Ning J.G., Lu Y.W., Gu Q.H., 2018. Mechanical properties and damage constitutive model of coal in coal-rock combined body. International Journal of Rock Mechanics and Mining Sciences 110, 140-150.
  • [12] Mahmoud A., Mahmoud B., Raheb B., 2019. Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension. Engineering Geology 259, 105188.
  • [13] Mirenkov V.E., 2006. Rock mass deformation near a crack located on an interface of rocks with different properties. Journal of Mining Science 42, 315-321.
  • [14] Mirenkov V.E., 2007. Contact problems in rock mechanics. Journal of Mining Science 43 (4), 370-381.
  • [15] Mirenkov V.E., 2009. On probable failure of an undercut rock mass. Journal of Mining Science 45, 105-111.
  • [16] Nasir O., Fall M., 2008. Shear behaviour of cemented pastefill-rock interfaces. Engineering Geology 101, 146-153.
  • [17] Niedbalski Z., Małkowski P., Majcherczyk T., 2018. Application of the NATM method in the road tunneling works in difficult geological conditions – The Carpathian flysch. Tunnelling and Underground Space Technology 74, 41-59.
  • [18] Oliveira D., Diederichs M.S., 2017. Tunnel support for stress induced failures in Hawkesbury Sandstone. Tunnelling and Underground Space Technology 64, 10-23.
  • [19] Shah S.D., Parthasarathy A., Limaye R.C., 1985. Geomechanical model simulation for the varied rock formations of the Kadana dam foundation, Gujarat, India. Bulletin of the International Association of Engineering Geology 31, 123-129.
  • [20] Wang A., Li X., Yang C., Huang Z., 2010. Study of interaction between creep deformation of bedded salt rock. Rock and Soil Mechanics 31 (12), 3964-3970.
  • [21] Xie H., Chen Z., Zhou H., Yi C., Chen Z., 2005. Study on two-body mechanical model based on interaction between structural body and geo-body. Chinese Journal of Rock Mechanics and Engineering 24 (9), 1457-1464.
  • [22] Xu D., Chen C., Xu Y. Ren W., Gu X., 1999. A Study of the Rock Mechanical Parameters of Slopes in East Open-pit Stope of Daye Iron Mine. Rock and Soil Mechanics 20 (4), 69-75.
  • [23] Yang C., Li Y., 2005. Expanded cosserat medium constituti ve model for laminated salt rock. Chinese Journal of Rock Mechanics and Engineering 24 (23), 4226-4232.
  • [24] Yassaghi A., Salari-Rad H., 2005. Squeezing rock conditi ons at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: a case study. International Journal of Rock Mechanics and Mining Sciences 42 (1), 95-208.
  • [25] Yin G., Li X., Lu J., Song Z., 2017. A failure criterion for layered composite rock under true triaxial stress conditions. Chinese Journal of Rock Mechanics and Engineering 36 (02), 261-269.
  • [26] Yu Y., Hu M., Yang X., Liang W., 2009. Similarity simulation of bedded composite rock. Metal Mine 1, 21-24.
  • [27] Zhang X., Wu B., Connell L.D., Han, Y., Jeffrey R.G., 2018. A model for hydraulic fracture growth across multiple elastic layers. Journal of Petroleum Science and Engineering 167, 918-928.
  • [28] Zhao X., Tang C., Tian J., 2007. Study on evolvement law of background stress field of multi-step excavation of roadway. Rock and Soil Mechanics 28 (4), 659-662.
  • [29] Zhao Z., Wang W., Dai C., Yan J., 2014. Failure characteristics of three-body model composed of rock and coal with different strength and stiffness. Transactions of Nonferrous Metals Society of China 5, 1538-1546.
  • [30] Zou C., Ye Y., Wang W., Wang S., Jing H., 2011. Monitorin g analysis on deformation of the roadway bolting by GFRP of Jinshandian iron mine. Metal Mine (11), 41-44.
  • [31] Zuo J., Wang Z., Zhou H., Pei J., Liu J., 2013. Failure behavior of a rock-coal-rock combined body with a weak coal interlayer. International Journal of Mining Science and Technology 23 (6), 907-912.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-298c14e6-fe6b-4113-8641-8e9a73505430
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.