PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of montmorillonite nanoparticles on thermal and mechanical properties of carbon-carbon hybrid composites based on phenolic-formaldehyde resin

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of the addition of K-10 montmorillonite (MMT) nanoparticles on the mechanical and thermal properties of carbon-carbon composites were investigated. The composites were obtained using self-made prepregs with plain and twill 2/2, 600 g/m2 carbon fabric and phenolic-formaldehyde resin. The composites were obtained by the hot pressing technique, followed by carbonization in an inert argon atmosphere. Modified samples of the composites contained 5 wt.% MMT, homogenously dispersed in the ceramic carbon matrix. The mechanical properties, thermal conductivity and thermal capacity of the composites were determined. Raman spectroscopy and Fourier transform infrared spectroscopy were used to investigate the carbon matrix composition and structure. The results show that the addition of MMT nanoparticles increased Young’s modulus by 48%, Kirchoff’s modulus by 80.2%, but did not change the interlaminar shear strength nor the bending strength. The MMT influenced the carbon microstructure, changed the ID//IG Raman ratios, as well as the matrix composition. The addition of MMT also increased the low temperature regime of thermal conductivity and diffusivity of the samples.
Rocznik
Strony
96--101
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Golecki I. et al., Properties of high thermal conductivity carbon-carbon composites for thermal management applications, paper presented at High-Temperature Electronic Materials, Devices and Sensors Conference, San Diego, CA., 10.1109/HTEMDS.1998.730696.
  • [2] Da Silva D.S., Côrtes A.D.S., Oliveira M.H., Motta E.F., Viana G.A., Mei P.R.., Marques F.C., Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells, J. Appl. Phys. 2011, 110, 043510, DOI: 10.1063/1.3622515.
  • [3] LeBlanc S., Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications, Sustain. Mater. Techn. 2014, 1-2, 26-35, DOI: 10.1016/j.susmat.2014.11.002.
  • [4] Bazrafshan S., Rajabpour A., Thermal transport engineering in amorphous graphene: Non-equilibrium molecular dynamics study, Int. J. Heat. Mass. Tran. 2017, 112, 379-386, DOI: 10.1016/j.ijheatmasstransfer.2017.04.127.
  • [5] Katz H.E., Poehler T.O., Innovative Thermoelectric Materials: Polymer, Nanostructure and Composite Thermoelectrics, Imperial College Press, London 2016.
  • [6] Gaitho F.M., Ndiritu F.G., Muriithi P.M., Ngumbu R.G., Ngareh J.K., Effect of thermal conductivity on the efficiency of single crystal silicon solar cell coated with an anti-reflective thin film, Sol. Energy 2009, 83, 8, 1290-1293, DOI: 10.1016/j.solener.2009.03.003.
  • [7] Parameswaranpillai J., Hameed N., Kurian T., Yu Y., Nanocomposite Materials: Synthesis, Properties and Applications, CRC Press, Boca Raton 2016.
  • [8] Policandriotes T., Filip P., Effects of selected nanoadditives on the friction and wear performance of carbon-carbon aircraft brake composites. Wear 2011, 271, 9-10, 2280-2289, DOI: 10.1016/j.wear.2011.01.093.
  • [9] Stoch A., Jastrzębski W., Długoń E., Stoch G.J., Błażewicz S., Adamczyk A., Tatarzyńska K., Modification of carbon composites by nanoceramic compounds, J. Mol. Struct. 2005, 744-747, 627-632, DOI: 10.1016/j.molstruc.2004.10.105.
  • [10] Deng Z.Y., Shi J.L., Zhang Y.F., Jiang D.Y., Guo J.K., Pinning effect of SiC particles on mechanical properties of Al2O3-SiC ceramic matrix composites, J. Eur. Ceram. Soc.1998, 18, 5, 501-508, DOI: 10.1016/S0955-2219(97)00164-7.
  • [11] Achilias D.S., Panayotidou E., Zuburtikudis I., Thermal degradation kinetics and isoconversional analysis of biodegradable poly(3-hydroxybutyrate)/organomodified montmorillonite nanocomposites, Thermochim. Acta 2011, 514, 1-2, 58-66, DOI: 10.1016/j.tca.2010.12.003.
  • [12] Zhang G., Wang F., Huang Z., Dai J., Shi M., Improved ablation resistance of silicone rubber composites by introducing montmorillonite and silicon carbide whisker, Materials 2016, 9, 9, 723, DOI: 10.3390/ma9090723.
  • [13] Natali M., Kenny J.M., Torre L., Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review, Prog. Mater. Sci. 2016, 84, 192-275, DOI: 10.1016/j.pmatsci.2016.08.003.
  • [14] Cancado L.G., Takai K., Enoki T., Endo M., Kim Y.A., Mizusaki H., Jorio A., Coelho L.N., Magalhaes-Paniago R., Pimenta M.A., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Appl. Phys. Lett. 2016, 88, 16, 163106, DOI: 10.1063/1.2196057.
  • [15] Ding J., Sun J., Huang Z., Wang Y., Improved high-temperature mechanical property of carbon-phenolic composites by introducing titanium diboride particles, Compos. Part B-Eng. 2018, 157, 289-294, DOI: 10.1016/j.compositesb.2018.08.124.
  • [16] Shen Q., Li H., Li W., Song Q., Realizing the synergy of carbon nanotubes and matrix microstructure for improved flexural behavior of laminated carbon/carbon composites, J. Alloy. Compd. 2018, 738, 49-55, https://doi.org/10.1016/j.jallcom.2017.12.111.
  • [17] Wang D., Parlow D., Yao Q., Wilkie C.A., PVC-clay nanocomposites: Preparation, thermal and mechanical properties, J. Vinyl Addit. Techn. 2004, 7, 4, 203-213, DOI: 10.1002/vnl.10292.
  • [18] Shen Q., Song Q., Li H., Xiao C., Wang T., Lin H., Li W., Fatigue strengthening of carbon/carbon composites modified with carbon nanotubes and silicon carbide nanowires, Int J. Fatigue 2019, 124, 411-421, DOI: 10.1016/j.ijfatigue.2019.03.023.
  • [19] Wang A., Gao X., Giese R.F., Chung D.D.L., A ceramic-carbon hybrid as a high-temperature structural monolith and reinforcing filler and binder for carbon/carbon composites, Carbon 2013, 59, 76-92, DOI: 10.1016/j.carbon.2013.02.057.
  • [20] Ibrahim Z., Koubaissy B., Mohsen Y., Hamieh T., Daou T., Nouali H., Foddis M., Toufaily J., Adsorption of pyridine onto activated montmorillonite clays: Effect factors, adsorption behavior and mechanism study, Am. J. Analyt. Chem. 2018, 9, 464-481, DOI: 10.4236/ajac.2018.910035.
  • [21] Wu Z., Zhou C., Qi R., The preparation of phenolic resin/montmorillonite nanocomposites by suspension condensation polymerization and their morphology, Polym. Composite 2002, 23, 4, 634-646, DOI: 10.1002/pc.10463.
  • [22] Ferrari A.C., Robertson J., Interpretation of raman spectra of disordered and amorphous carbon, Phys. Rev. B 2000, 61, 20, 14095-14107, DOI: 10.1103/PhysRevB.61.14095.
  • [23] Goto K., Furukawa Y., Hatta H., Kogo Y., Fatigue behawior of 2D laminate C/C composites at room temperature, Compos. Sci. Technol. 2005, 65, 7-8, 1044-1051, DOI: 10.1016/j.compscitech.2004.09.031.
  • [24] Kumar S.K.A., Ramachandran R., Kalidhasan S., Rajesh V., Rajesh N., Potential application of dodecylamine modified sodium montmorillonite as an effective adsorbent for hexavalent chromium, Chem. Eng. J. 2012, 211-212, 396-405, DOI: 10.1016/j.cej.2012.09.029.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-298173c3-af73-411a-bbe0-a86db1ba2efc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.