PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dispersion of Al-Si Alloy Structure by Intensive Pulsed Electron Beam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By the method of modern physical material science (optic microscopy scanning and transmission electron microscopy) the analysis of structural phase states, the morphology of the second phase inclusions and defect substructure of Al-Si alloy (silumin) of hypoeutectic composition, subjected to electron beam processing was done with the following parameters: energy density 25-35 J/cm2, beam length 150 μs, pulse number – 3, pulse repetition rate – 0.3 Hz, pressure of residual gas (argon) 0.02 Pa. The surface irradiation results in the melting of the surface layer, the dissolution of boundary inclusions, the stricture formation of high speed cellular crystallization of submicron sizes, the repeated precipitation of the second phase nanodimentional particles. With the increased distance from the irradiation surface the layer containing the second phase inclusions of quasi-equilibrium shape along with the crystallization cells was revealed. It is indicative of the processes of Al-Si alloy structure globalization on electron beam processing.
Rocznik
Tom
Strony
79--84
Opis fizyczny
Bibliogr. 36 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Wenzhou University, China
  • Samara National Research University, Russia
autor
  • Siberian State Industrial University, Russia
  • Siberian State Industrial University, Russia
autor
  • Institute of High Current Electronics SB RAS, Russia
autor
  • Siberian State Industrial University, Russia
  • Siberian State Industrial University, Russia
Bibliografia
  • [1] Szymczak, T., Gumienny, G. & Pacyniak, T. (2016). Effect of Cr and W on the Crystallization Process, the Microstructure and Properties of Hypoeutectic Silumin to Pressure Die Casting. Archives of Foundry Engineering. 16(3), 109-114. DOI: 10.1515/afe-2016-0060.
  • [2] Majernik, J., Gaspar, S., Gryc, K. & Socha, L. (2018). Changes in eutectic silumin structure depending on gate geometry and its effect on mechanical properties of casting. Manufacturing Technology. 18(3), 439-443. DOI: 10.21062/ujep/118.2018/a/1213-2489/MT/18/3/439.
  • [3] Szymczak, T., Gumienny, G. & Pacyniak, T. (2015). Effect of Vanadium and Molybdenum on the Crystallization, Microstructure and Properties of Hypoeutectic Silumin. Archives of Foundry Engineering. 15(4), 81-86. DOI: 10.1515/afe-2015-0084.
  • [4] Szymczak, T., Gumienny, G., Pacyniak, T. & Walas, K. (2015). Effect of tungsten and molybdenum on the crystallization, microstructure and properties of silumin 226. Archives of Foundry Engineering. 15(3), 61-66. DOI: 10.1515/afe-2015-0061.
  • [5] Pasko, J., Gaspar, S. & Ruzbarsky, J. (2014). Die casting defects of castings from silumin. Applied Mechanics and Materials. 510, 91-96. DOI: 10.4028/www.scientific.net /AMM.510.91.
  • [6] Deev, V.B., Prusov, E.S. & Kutsenko A.I. (2018). Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. Metallurgia Italiana. 110(2), 16-24.
  • [7] Deev, V.B., Ponomareva, K.V. & Yudin, A.S. (2015). Investigation into the density of polystyrene foam models when implementing the resource-saving fabrication technology of thin-wall aluminum sheet. Russian Journal of Non-Ferrous Metals. 56(3), 283-286. DOI: 10.3103/ S1067821215030049.
  • [8] Li, Q.L., Xia, T.D., Lan, Y.F. & Li, P.F. (2014). Effects of melt superheat treatment on microstructure and wear behaviours of hypereutectic Al–20Si alloy. Materials Science and Technology (United Kingdom). 30 (7), 835-841. DOI: 10.1179/1743284713Y.0000000415.
  • [9] Yang, W., Yang, X. & Ji, S. (2015). Melt superheating on the microstructure and mechanical properties of diecast Al-Mg-Si-Mn alloy. Metals and Materials International. 21(2), 382-390. DOI: 10.1007/s12540-015-4215-2
  • [10] Zhang, Y., Rabiger, D., Willers, B. & Eckert, S. (2017). The effect of pulsed electrical currents on the formation of macrosegregation in solidifying Al–Si hypoeutectic phases. International Journal of Cast Metals Research. 30, 13-19. DOI: 10.1080/13640461.2016.1174455.
  • [11] Krymsky, V. & Shaburova, N. (2018). Applying of Pulsed Electromagnetic Processing of Melts in Laboratory and Industrial Conditions. Materials. 11(6), 954. DOI: 10.3390/ma11060954.
  • [12] Zheng, T., Zhou, B., Zhong, Y., Wang, J., Shuai, S., Ren, Z., Debray, F. & Beaugnon, E. (2019). Solute trapping in Al-Cu alloys caused by a 29 Tesla super high static magnetic field. Scientific Reports. 9(1), 266. DOI: 10.1038/s41598-018-36303-5.
  • [13] Vorozhtsov, S., Kudryashova, O., Promakhov, V., Dammer, V. & Vorozhtsov, A. (2016). Theoretical and experimental investigations of the process of vibration treatment of liquid metals containing nanoparticles. JOM. 68(12), 3094-3100. DOI: 10.1007/s11837-016-2147-z.
  • [14] Zhang, Y., Svynarenko, K. & Li, T. (2016). Effect of ultrasonic treatment on formation of iron-containing intermetallic compounds in Al–Si alloys. China Foundry. 13(5), 316-321. DOI: 10.1007/s41230-016-5066-2.
  • [15] Eskin, D.G. (2017). Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook. Materials Science and Technology (United Kingdom). 33(6), 636-645. DOI: 10.1080/02670836.2016.1162415.
  • [16] Panin, S.V., Maruschak, P.O., Vlasov, I.V., Sergeev, V.P., Ovechkin, B.B. & Neifeld, V.V. (2016). Impact toughness of 12Cr1MoV steel. Part 2 - Influence of high intensity ion beam irradiation on energy and deformation parameters and mechanisms of fracture. Theoretical and Applied Fracture Mechanics. 83, 82-92. DOI: 10.1016/j.tafmec.2015.12.009.
  • [17] Panin, S.V., Vlasov, I.V., Sergeev, V.P., Ovechkin, B.B., Marushchak, P.O., Ramasubbu, S., Lyubutin, P.S. & Titkov, V.V. (2015). Fatigue life enhancement by irradiation of 12Cr1MoV steel with a Zr+ ion beam. Mesoscale deformation and fracture. Physical Mesomechanics. 18 (3), 261-272. DOI: 10.1134/S1029959915030108.
  • [18] Ramazanov, K.N., Vafin, R.K. & Khusainov, Yu, G. (2014). Ion nitriding of tool steel kh12 in glow discharge in cross electric and magnetic fields. Metal Science and Heat Treatment. 56(1-2), 50-52. DOI: 10.1007/s11041-014-9701-5.
  • [19] Budilov, V.V., Ramazanov, K.N. & Vafin, R.K. (2011). Ion nitriding of tool steels with application of magnetic field. Metal Science and Heat Treatment. 53 (7-8), 347-349. DOI: 10.1007/s11041-011-9395-x.
  • [20] Ghyngazov, S.A., Vasil’ev, I.P., Surzhikov, A.P., Frangulyan, T.S. & Chernyavskii, A.V. (2015). Ion processing of zirconium ceramics by high-power pulsed beams. Technical Physics. 60(1), 128-132. DOI: 10.1134/S1063784215010120.
  • [21] Fomin, A.A. & Gusev, V.G. (2013) Vibrational displacement of a spindle with static disequilibrium of the cutting tool. Russian Engineering Research. 33(7), 412-415. DOI: 10.3103/S1068798X1307006X.
  • [22] Surzhikov, A.P., Frangulyan, T.S., Ghyngazov, S.A. & Vasil’ev, I.P. (2014). The effect of a low-energy high-current pulsed electron beam on surface layers of porous zirconium ceramics. Technical Physics Letters. 40 (9), 762-765. DOI: 10.1134/S1063785014090144.
  • [23] Ivanov, Y.F., Alsaraeva, K.V., Gromov, V.E., Popova & N.A., Konovalov, S.V. (2015). Fatigue life of silumin treated with a high-intensity pulsed electron beam. Journal of Surface Investigation. 9(5), 1056-1059. DOI: 10.1134/ S1027451015050328.
  • [24] Zagulyaev, D., Konovalov, S., Gromov, V., Glezer, A., Ivanov, Y. & Sundeev, R. (2018). Structure and properties changes of Al-Si alloy treated by pulsed electron beam. Materials Letters. 229, 377-380. DOI: 10.1016/ j.matlet.2018.07.064.
  • [25] An, J., Shen, X.X., Lu, Y., Liu, Y.B., Li, R.G., Chen, C.M. & Zhang, M.J. (2006). Influence of high current pulsed electron beam treatment on the tribological properties of Al-Si-Pb alloy. Surface and Coatings Technology. 200(18-19), 5590-5597. DOI: 10.1016/j.surfcoat.2005.07.106.
  • [26] Hao, S., Yao, S., Guan, J., Wu, A., Zhong, P. & Dong, C. (2001). Surface treatment of aluminum by high current pulsed electron beam. Current Applied Physics. 1(2-3), 203-208. DOI: 10.1016/S1567-1739(01)00017-7.
  • [27] Yan, P., Grosdidier, T., Zhang, X. & Zou, J. (2018). Formation of large grains by epitaxial and abnormal growth at the surface of pulsed electron beam treated metallic samples. Materials and Design. 159, 1-10. DOI: 10.1016/j.matdes.2018.08.033.
  • [28] Zhang, C., Lv, P., Cai, J., Zhang, Y., Xia, H. & Guan, Q. (2017). Enhanced corrosion property of W-Al coatings fabricated on aluminum using surface alloying under high-current pulsed electron beam. Journal of Alloys and Compounds. 723, 258-265. DOI: 10.1016/j.jallcom. 2017.06.189.
  • [29] Park, K., Park, J. & Kwon, H. (2017). Fabrication and characterization of Al-SUS316L composite materials manufactured by the spark plasma sintering process. Materials Science and Engineering A. 691, 8-15. DOI: 10.1016/j.msea.2017.03.029.
  • [30] Gao, B., Hao, Y., Tu, G., Li, S., Yu, F., Zuo, L. & Hu, L. (2013). Surface modification of Mg 67 -Zn 30 -Y 3 quasicrystal alloy by high current pulsed electron beam. Surface and Coatings Technology. 229, 42-45. DOI: 10.1016/j.surfcoat.2012.06.026.
  • [31] Gao, B., Xu, N. & Xing, P. (2019). Shock wave induced nanocrystallization during the high current pulsed electron beam process and its effect on mechanical properties. Materials Letters. 237, 180-184. DOI: 10.1016/j.matlet. 2018.11.054
  • [32] Lyu, J., Gao, B., Hu, L., Lu, S. & Tu, G. (2016). Microstructure analysis of HPb59-1 brass induced by high current pulsed electron beam. High Temperature Materials and Processes. 35(7), 715-721. DOI: 10.1515/htmp-2015-0030.
  • [33] Gao, B., Hao, S., Zou, J., Wu, W., Tu, G. & Dong, C. (2007). Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy. Surface and Coatings Technology. 201(14), 6297-6303. DOI: 10.1016/j.surfcoat. 2006.11.036.
  • [34] Gao, B., Hao, S., Zou, J., Grosdidier, T., Jiang, L., Zhou, J. & Dong, C. (2005). High current pulsed electron beam treatment of AZ31 Mg alloy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 23(6), 1548-1553. DOI: 10.1116/1.2049299.
  • [35] Zolotorevsky, V.S., Belov, N.A. & Glazoff, M.V. (2007). Casting Aluminium Alloys. Oxford: Elsevier.
  • [36] Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W.M., Scott, J.H.J. & Joy, D.C. (2017) Scanning electron microscopy and x-ray microanalysis. New York: Springer.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-297ce994-d44f-49b4-8546-6aef20c0cf48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.