PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fuzzy logic system to detect and classify faults for laboratory prototype model of TCSC compensated transmission line

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an expert system-based fault detection and classification scheme is developed for a laboratory prototype model of TCSC compensated long transmission line (thyristor controlled series compensator). The equivalent model of laboratory prototype system is simulated in MATLAB Simulink. An expert system based on fuzzy logic is developed by using threephase voltage and current signals from single end measurements. Obtained voltage and current signals are pre-processed with Discrete Fourier Transform (DFT) to obtain the fundamental component of these signals. Further zero sequence current and obtained fundamental voltage and current signals are used to develop a fuzzy inference system (FIS) for shunt fault detection and classification task. There are three different FISs developed for three individual phases of the transmission system and one FIS is developed for zero sequence current signal, which provides ground involvement information. The combined binary output of the developed four FISs provides fault classification. The performance of the developed FISs is rigorously tested with the variation of different fault parameters, and different location of the TCSC. The simulated results indicate that the proposed scheme performance is reliable in its zone of protection.
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • National Institute of Technology, Raipur
  • National Institute of Technology, Raipur
Bibliografia
  • [1] N. G. Hingorani, L. Gyugyi, Understanding FACTS: concepts and technology of flexible AC transmission systems, IEEE press, 2000.
  • [2] P. Dash, A. Pradhan, G. Panda, Apparent impedance calculations for distance-protected transmission lines employing series-connected facts devices, Electric Power Components and Systems 29 (7) (2001) 577–595.
  • [3] S. Jamali, A. Kazemi, H. Shateri, Distance relay over-reaching due to installation of tcsc on next line, in: 2006 IEEE International Symposium on Industrial Electronics, Vol. 3, IEEE, 2006, pp. 1954–1959.
  • [4] P. Dash, A. Pradhan, G. Panda, A. Liew, Digital protection of power transmission lines in the presence of series connected facts devices, in: 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 00CH37077), Vol. 3, IEEE, 2000, pp. 1967– 1972.
  • [5] B. Vyas, R. P. Maheshwari, B. Das, Protection of series compensated transmission line: issues and state of art, Electric power systems research 107 (2014) 93–108.
  • [6] B. Kumar, A. Yadav, Backup protection scheme for transmission line compensated with upfc during high impedance faults and dynamic situations, IET Science, Measurement & Technology 11 (6) (2017) 703– 712.
  • [7] B. Kumar, A. Yadav, A. Y. Abdelaziz, Synchrophasors assisted protection scheme for the shunt-compensated transmission line, IET Generation, Transmission & Distribution 11 (13) (2017) 3406–3416.
  • [8] H. Wang, W. Keerthipala, Fuzzy-neuro approach to fault classification for transmission line protection, IEEE Transactions on Power Delivery 13 (4) (1998) 1093–1104.
  • [9] A. Yadav, A. Thoke, Transmission line fault distance and direction estimation using artificial neural network, International Journal of Engineering, Science and Technology 3 (8) (2011) 110–121.
  • [10] B. K. Chaitanya, A. K. Soni, A. Yadav, Communication assisted fuzzy based adaptive protective relaying scheme for microgrid, Journal of Power Technologies 98 (1) (2018) 57–69.
  • [11] B. Y. Vyas, R. Maheshwari, B. Das, Improved fault analysis technique for protection of thyristor controlled series compensated transmission line, International Journal of Electrical Power & Energy Systems 55 (2014) 321–330.
  • [12] P. Dash, M. Chilukuri, Soft computing tools for protection of compensated network, in: Proceedings. National Power Engineering Conference, 2003. PECon 2003., IEEE, 2003, pp. 52–61.
  • [13] A. Pradhan, A. Routray, S. Pati, D. Pradhan, Wavelet fuzzy combined approach for fault classification of a series-compensated transmission line, IEEE Transactions on Power Delivery 19 (4) (2004) 1612–1618.
  • [14] P. Dash, S. Samantaray, G. Panda, Fault classification and section identification of an advanced series-compensated transmission line using support vector machine, IEEE transactions on power delivery 22 (1) (2007) 67–73.
  • [15] U. B. Parikh, B. Das, R. Maheshwari, Fault classification technique for series compensated transmission line using support vector machine, International Journal of Electrical Power & Energy Systems 32 (6) (2010) 629–636.
  • [16] P. Tripathi, G. Pillai, H. Gupta, New method for fault classification in tcsc compensated transmission line using ga tuned svm, in: 2012 IEEE International Conference on Power System Technology (POWERCON), IEEE, 2012, pp. 1–6.
  • [17] B. Vyas, R. P. Maheshwari, B. Das, Evaluation of artificial intelligence techniques for fault type identification in advanced series compensated transmission lines, IETE Journal of Research 60 (1) (2014) 85–91.
  • [18] B. Bahmanifirouzi, E. Farjah, T. Niknam, E. A. Farsani, A new hybrid hbmo-sfla algorithm for multi-objective distribution feeder reconfiguration problem considering distributed generator units, Iranian Journal of Science and Technology. Transactions of Electrical Engineering 36 (E1) (2012) 51.
  • [19] A. Swetapadma, A. Yadav, Improved fault location algorithm for multilocation faults, transforming faults and shunt faults in thyristor controlled series capacitor compensated transmission line, IET Generation, Transmission & Distribution 9 (13) (2015) 1597–1607.
  • [20] G. R. Rajeswary, G. R. Kumar, G. J. S. Lakshmi, G. Anusha, Fuzzywavelet based transmission line protection scheme in the presence of tcsc, in: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), IEEE, 2016, pp. 4086–4091.
  • [21] S. Cai, G. Liu, Study on application of fisher information for power system fault detection, Journal of Power Technologies 98 (3) (2016) 274–280.
  • [22] SimPower Systems Toolbox ver. 8.1, for use with Simulink, User’s Guide. The Math Works.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-29779f4b-5458-4fa9-b56e-57d2f7497b48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.