PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wettability, reactivity and interfaces in the Gd/TiO2 system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-temperature interaction of liquid Gd in contact with dense, polycrystalline TiO2 substrate, was investigated. Wettability and reactivity tests were carried out at two different temperatures (1362°C and 1412°C) in flowing gas (Ar, 850−900 hPa) using the sessile drop method and classical contact heating of the examined couple of materials. The procedure was combined with a drop pushing procedure. During high temperature studies, images of the Gd/TiO2 couple were continuously recorded by a high-resolution CCD camera. The results of wettability tests of liquid gadolinium on titanium dioxide substrate show that the Gd/TiO2 system is non-wettable at both test temperatures (in either case the final contact angle was 100°). The results of structure examinations on the cross-sectioned samples show the dissolution of the TiO2 substrate in liquid Gd and the presence of two sublayers at the drop/substrate interface: Gd2TiO5 (from the drop side) and Gd2Ti2O7 (from the substrate side).
Słowa kluczowe
Rocznik
Strony
303--308
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Foundry Research Institute, ul. Zakopianska 73, 30-418 Krakow, Poland
autor
  • Foundry Research Institute, ul. Zakopianska 73, 30-418 Krakow, Poland
autor
  • Foundry Research Institute, ul. Zakopianska 73, 30-418 Krakow, Poland
autor
  • Foundry Research Institute, ul. Zakopianska 73, 30-418 Krakow, Poland
autor
  • Foundry Research Institute, ul. Zakopianska 73, 30-418 Krakow, Poland
  • Institute of Precision Mechanics, ul. Duchnicka 3, 01-796 Warsaw, Poland
autor
  • IFW Dresden, Institute for Complex Materials, Helmholtzstraße 20, 01069 Dresden, Germany
autor
  • IFW Dresden, Institute for Complex Materials, Helmholtzstraße 20, 01069 Dresden, Germany
autor
  • Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, 8700 Leoben, Austria
  • Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, 8700 Leoben, Austria
Bibliografia
  • 1. Hiramitsu Y., T. Homma, S. Kamado. 2014. “Improvement of the mechanical properties of Mg-Gd-Y-Zn alloy castings by grain refinement”. IOP Conference Series: Materials Science and Engineering 21 (1) : 1−8.
  • 2. Tissot L., A. Blaise. 1970. “Magnetic and crystallographic properties of Pr-Gd alloys”. Journal of Applied Physics 41 (3) : 1180−1182.
  • 3. Kaban I., M. Köhler, L. Ratke, R. Nowak, N. Sobczak, N. Mattern, J. Eckert, A.L. Greer, S.W. Sohn, D.H. Kim. 2012. “Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials”. Journal of Materials Science 47 : 8360−8366.
  • 4. Sobczak N., R. Nowak, A. Siewiorek, B. Korpala, G. Bruzda, I. Kaban, O. Shuleshova, J.H. Han, N. Mattern, J. Eckert. 2014. High temperature study of monotectic transformation, wetting and reactivity of liquid Gd-Ti alloys. In Proceedings of the 71st World Foundry Congress, Bilbao, Spain.
  • 5. Reed T.B. 1971. Free Energy Formation of Binary Compounds: An atlas of charts for high temperature chemical calculations. Cambridge, MA: MIT Press.
  • 6. Sobczak N., R. Nowak, W. Radziwill, J. Budzioch, A. Glenz. 2008. “Experimental complex for investigations of high temperature capillarity phenomena”. Materials Science and Engineering A 495 (1−2) : 43−49.
  • 7. Turalska P., M. Homa, G. Bruzda, N. Sobczak, I. Kaban, N. Mattern, J. Eckert. 2017. “Wetting behavior and reactivity between liquid Gd and ZrO2 substrate”. Journal of Mining and Metallurgy Section B-Metallurgy 53 (3) B : 285−293.
  • 8. Liggieri L., A. Passerone. 1989. “An automatic technique for measuring the surface tension of liquid metals”. High Temperature Technologies 7 (2) : 82−86.
  • 9. ASTRA Reference Book, Oct. 2007, IENRI, Report.
  • 10. Diebold U. 2003. “The surface science of titanium dioxide”. Surface Science Reports 48 (5−8) : 53−229.
  • 11. Durov A.V., M.V. Karpets, T.V. Sydorenko, B.D. Kostyuk, Yu.V. Naidich. 2017. “The role of stoichiometry in contact interaction of zirconia with metal melts”. Powder Metallurgy and Metal Ceramics 55 (9−10) : 612−616.
  • 12. McMurray J.W. 2014. Thermodynamic modeling of uranium and oxygen containing ternary systems with gadolinium, lanthanum, and thorium. PhD thesis, University of Tennessee, http://trace.tennessee.edu/utk_graddiss/3152/ [Accessed 18 May 2017].
  • 13. Mattern N., J.H. Han, O. Fabrichnaya, M. Zinkevich, W. Löser, J. Werner, R. Nowak, I. Kaban, O. Shuleshova, D. Holland-Moritz, J. Bednarčík, N. Sobczak, J. Eckert. 2013. “Experimental and thermodynamic assessment of the Gd-Ti system”. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 42 : 19−26.
  • 14. Waring J.L., S.J. Schneider. 1965. “Phase equilibrium relationships in the system Gd2O3-TiO2”. Journal of Research at the National Bureau of Standards – A. Physics and Chemistry 69A (3) : 255−261.
  • 15. Fabrichnaya O., Ch. Wang, M. Zinkevich, F. Aldinger, C.G. Levi. 2005. “Phase equilibria and thermodynamic properties of the ZrO2-GdO1.5-YO1.5 system”. Journal of Phase Equilibria and Diffusion 26 (6) : 591−604.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2976047c-6ae0-40b0-9e59-4c4fa3e30454
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.